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Popular science summary of the thesis 
Transcription is a fundamental process that occurs in all cells of the human body and 

allows us to use the genes we inherit. It “transcribes” the DNA (genes) in our cell’s 

nucleus into RNA which can further be used to make protein. Depending on which genes 

are transcribed, the cell can perform different tasks with the proteins they make. The 

ability to control which genes are being transcribed is crucial to the development of the 

individual and largely responsible for the incredible diversity of cells in the human body.  

Transcription occurs in discrete bursts, with many RNA molecules being produced in a 

short period of time followed by a period of inactivity. Studying how transcriptional 

bursting is controlled and its consequences is important. However, most methods that 

have been used to measure transcription hide this phenomenon and the ones that can 

be used to observe transcriptional bursting can only be applied to one or a few genes at 

a time. Furthermore, we have two copies of our chromosomes (molecules of DNA), and 

transcription occurs independently from each gene copy. 

In this thesis, I describe my effort to develop new methods to measure transcriptional 

bursts and findings related to them. All the studies have used a relatively new and 

quickly developing method called single-cell RNA sequencing. This method turns the 

cell’s RNA into DNA, which is then sequenced to determine which genes have been 

transcribed by that cell.  

In Paper I, I developed a computational model that allowed us to estimate the 

transcriptional bursting parameters of each transcribed gene. These parameters can be 

summarized into two characteristics, the frequency of bursts (burst frequency) and the 

average number of transcripts produced in one burst (burst size). This model was then 

applied to single-cell RNA sequencing data from a mouse. By using single-cell RNA 

sequencing data we can study the transcriptional bursting behavior of many genes 

simultaneously. We showed that certain parts of the DNA which regulate transcription 

affect transcriptional bursting in different ways. Parts of the DNA which are called 

enhancers can help increase burst frequency, while other parts known as promoters 

instead affect burst size. The mice we used is a crossbreed between two distantly 

related mice which allows us to distinguish between the two copies of each 

chromosome since they have lots of differences in their DNA. In Paper II we show that 

the frequency of transcriptional bursts determines how often we observe either copy of 

a gene. This finding can help explain how some genetic diseases have variable 

penetrance on patients. 

The biological sex of an individual is determined by the presence of the Y chromosome. 

Males have one Y chromosome and one X chromosome, while females have two X 

chromosomes. In any other case having only one copy of a chromosome is not 



compatible with life. It turns out that the X chromosome is peculiar in multiple ways. 

Interestingly, in females one of their X chromosomes become a condensed molecule 

early in development and cannot be transcribed from, which is called X chromosome 

inactivation. In the 1960’s the researcher Susumu Ohno hypothesized that transcription 

from the single X chromosome is boosted to be equal to having two chromosomes. The 

single active X chromosome is working overtime. In Paper III we argue that this is indeed 

the case, and that is achieved by an increase in the frequency of transcriptional bursts. 

Furthermore, by studying female cells that are going through X chromosome 

inactivation, we find that the increase in bursting frequency is reliant on the number of 

active X chromosomes. 

In Paper IV and V we describe two methods that allow us to measure what kind of RNA 

is produced within a specified time-window. This is done by giving cells growing in the 

culture dish in the lab a building block of RNA that is slightly different from the normal 

version, but similar enough that the cell uses it during transcription. Using a chemical 

conversion step and computational algorithms, we can distinguish between the RNA we 

sequenced that is newly transcribed and the RNA that was transcribed before we added 

our unusual building block. We can use this to study transcriptional responses, which we 

demonstrate in Paper IV by stimulating immune cells. Furthermore, in Paper V we make 

the method better, and show the advantages of studying transcriptional bursting with 

molecules that are only recently produced. 

In conclusion, studying transcriptional bursting is relevant to many topics in cell biology 

and the studies in this thesis have demonstrated the possibility to study it for many 

genes at once. This approach can be used to study cells at a deeper level. 

 

 

 

 

 

 

 

 

 

 



 

 

Populärvetenskaplig sammanfattning 
Transkription är en fundamental process som tar plats i alla celler i människans kropp 

och låter oss använda generna vi har ärvt. Den ”transkriberar” DNAt (gener) i vår 

cellkärna till RNA som sedan kan användas för att göra protein. Beroende på vilka gener 

som transkriberas kan cellen utöva de olika uppgifter som proteinerna kan göra. 

Förmågan att kontrollera vilka gener som transkriberas är avgörande för utvecklingen av 

individen och till stor del ansvarig för den enorma mångfalden av olika celler i vår kropp.  

Transkription sker i avskilda “explosioner” av aktivitet, som jag med viss motvilja för 

anglicismer kommer kallar för bursts. Dessa bursts producerar många RNA molekyler 

som följs av längre perioder av inaktivitet. Att studera hur bursts kontrolleras och dess 

konsekvenser är viktigt. Men de flesta metoder som används för att mäta transkription 

döljer detta fenomen, och de metoder som man kan använda kan bara tillämpas på en 

eller ett fåtal gener åt gången. Dessutom har vi två kopior av våra kromosomer (stora 

molekyler av DNA) och transkription från dessa sker oberoende från varje genkopia. 

Denna avhandling beskriver jag mina insatser att utveckla nya metoder för att mäta 

bursts och mina upptäcker relaterat till dem. Alla studier har använt en relativt ny och 

snabbt växande metod som kan RNA-sekvensering av enskilda celler. Denna metod gör 

om cellens RNA till DNA som sedan kan sekvenseras för att fastställa vilka gener som har 

transkriberats av den cellen. 

I Delarbete I beskriver jag en beräkningsmodell för att uppskatta burstparametrar för 

varje transkriberad gen. Dessa parametrar kan sammanfattas med två kännetäcken, hur 

ofta en gen burstar (burstfrekvens) och hur många RNA molekyler produceras i en burst 

i genomsnitt (burststorlek). Denna modell användes sedan på RNA-sekvenseringsdata 

på enskilda musceller. Genom att använda denna metod kan vi studera bursts från 

många gener samtidigt. Vi visade att olika delar av vårt DNA som kontrollerar 

transkription har olika påverkan på bursts. Vi visade att enhancers påverkar 

burstfrekvensen, medan en annan grupp som kallas promoters påverkar burststorleken. 

Musen vi använde var en korsning mellan två avlägset besläktade möss vilket låter oss 

skilja på de två olika genkopiorna på grund av den genetiska variationen i DNAt. 

Delarbete II visar vi att burstfrekvensen bestämmer hur ofta vi ser de två olika 

genkopiorna. Denna iakttagelse kan förklara varför vissa genetiska sjukdomar har olika 

penetrans i olika patienter.  

Det biologiska könet bestäms av närvaron av Y kromosomen. Män har en Y kromosom 

och en X kromosom medan kvinnor har två X kromosomer. I andra alla fall så är det inte 

möjligt att bara ha en kopia av en kromosom. Det visar sig att X kromosomen är speciell 

på flera sätt. Intressant nog så kondenseras en av kvinnans X kromosomer och görs 

otillgänglig i alla celler tidigt i utvecklingen, detta kallas X kromosom inaktivering.  På 



1960-talet formulerade forskaren Susumu Ohno hypotesen att transkriptionen från X 

kromosomen dessutom sker i dubbel mängd för att matcha samma nivå från två 

kromosomkopior. Denna ensamma X kromosom jobbade övertid. Delarbete III visar för 

att detta är fallet och uppnås genom att öka burstfrekvensen för X kromosomens gener. 

Dessutom visar vi genom att studera kvinnliga celler vars X kromosom inaktiveras att 

denna ökning i burstfrekvens är beroende på antalet aktiva X kromosomer. 

I Delarbete IV och V beskriver vi två metoder som låter oss mäta vilka gener som 

transkriberas under ett tidsfönster i enskilda celler. Detta gör vi genom att ge celler som 

växer i en cellodlingsplatta en byggsten av RNA som är lite annorlunda, men tillräckligt 

lika att cellen använder den vid transkription. Genom en kemisk omvandling och 

beräkningsalgoritmer kan vi skilja mellan RNA som transkriberades nyligen och RNA som 

transkriberades innan vi gav cellerna den annorlunda byggstenen. Vi kan använda denna 

metod för at studera transkiptionella svar, som vi visar i Delarbete IV genom att 

stimulera immunceller. Dessutom gör vi metoden bättre i Delarbete V och visar de 

fördelar denna metod har för att studera bursts genom att avgränsa analysen till det 

RNA som är nytt.   

För att sammanfatta så är det relevant att mäta transkriptionella bursts för många frågor 

i cellbiologi och delarbeten i denna avhandling visar möjligheten att undersöka flera 

gener samtidigt i enskilda celler. Detta tillvägagångssätt kan användas för att studera 

våra celler på en djupare nivå än tidigare. 

 

 

 

 

 

 

 

 

 



 

 

Abstract 
In mammalian cells, transcription occurs in discrete bursts leading to fluctuations in 

transcripts from expressed genes. Although this behavior was first reported not long 

after the discovery of messenger RNA (mRNA), the methods to measure transcriptional 

bursting have been limited in throughput and scalability. To enable transcriptome wide 

analysis of transcriptional bursting, I have developed multiple methods to estimate 

transcriptional bursting behavior using deeply sequenced single-cell RNA-sequencing 

data. In Paper I, we use a computational likelihood method based on the two-state 

model of transcriptional bursting to estimate allele-resolved bursting kinetics of mouse 

cells. The transcriptome wide estimates allow us to detect how the genomic regions of 

enhancers and promoters affect transcriptional bursts. To a first approximation, 

enhancers direct the frequency of bursts while promoters influence the number of 

transcripts per burst. The fluctuations of the transcript alleles may cause phenotypic 

variability over time. In Paper II, we directly show that the bursting behavior of a gene 

determines how often monoallelic expression is observed from that gene. Moreover, we 

show that this can lead to false positive monoallelic observations in bulk experiments if 

not considered. This can be concluded for the genes present on autosomal 

chromosomes. The X chromosome, however, has only one active copy in mature cells 

which causes complications in gene dosage. In Paper III, we report that the genes on the 

single active X chromosome are upregulated compared to the genes on the autosomal 

chromosomes, and that this upregulation is achieved through an increased burst 

frequency. Furthermore, this upregulation is coupled to X chromosome inactivation in 

females. To study transcriptional bursting at a more resolved time scale, we developed 

novel single cell sequencing methods using metabolic labeling in Paper IV and V. These 

methods supply the nucleotide analog 4-thiouridine to cells during cell culture, which 

become incorporated during transcription. Due to the alkylation reaction during library 

preparation leading to the incorporation of the wrong nucleotide during reverse 

transcription, the incorporated 4-thiouridine can be computationally detected as 

mismatches to the reference genome during analysis. We use this approach to study 

responses to a perturbation (Paper IV) and to study transcriptional bursting during a 2-

hour time window (Paper V). This data allows the further dissection of transcriptional 

bursting and the ability to study co-bursting in single cells. We show that the synthesis 

rate mainly determines burst size and not the transcriptional off rate. We do not find co-

bursting to be a general phenomenon across the transcriptome but do find certain gene 

pairs that exhibit co-bursting.  
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1 Introduction 
This thesis is about transcription. Specifically, how transcription occurs, transcriptional 

bursting, my efforts to measure transcriptional bursts and some underlying principles of 

how transcriptional bursting is controlled. Mammals are very complex organisms, with 

many organs that work together to constitute the animal. Those organs are in turn 

composed of cells that are specialized to perform specific tasks. Transcription is 

important because the main way these cells are able to specialize is dependent on 

which genes are transcribed.  

2 Literature review 

2.1 The genome 

The genome contains the information needed for the organism to develop and function. 

It is composed of deoxyribonucleic acid (DNA), that is organized into chromosomes in 

the nucleus of the cell and circular DNA in the mitochondria. The human diploid genome 

consists of 23 pairs of chromosomes, of which 22 pairs are autosomal and 1 pair is the 

sex chromosomes, and was completely sequenced just last year (Nurk et al. 2022).  

2.1.1 The genome is packed and structured 

The genome has multiple structural features which are important for understanding 

transcription. The fundamental structural unit of the chromosome is the nucleosome, 

which consists of a segment of DNA wrapped around a protein complex called a histone. 

The histone itself is an octamer composed of two copies of four proteins: histone 

proteins H2A, H2B, H3, and H4 (Babu and Verma 1987). The DNA is wound 1.65 turns 

around the histone octamer, corresponding to 146 base pairs of DNA (Luger et al. 1997). 

The complex of nucleosomes is called chromatin. The open form of chromatin is called 

euchromatin and is associated with the active transcription of genes. Approximately 

92% of the human genome is euchromatic (International Human Genome Sequencing 

Consortium 2004). The closed form of chromatin is called heterochromatin. The spacing 

between nucleosomes in heterochromatin is much narrower compared to euchromatin 

and chromatin in the centromeres and near the telomeres are invariably 

heterochromatic (Saksouk, Simboeck, and Déjardin 2015). Regardless of the cell type, 

these regions are tightly packed, and no polymerase can access these regions (Volpe et 

al. 2002). Furthermore, the conformation of chromatin is regulated by histone 

modifications. Specific histone residues may be chemically modified to affect the 

structure of the nucleosome, which may promote or prevent transcription. For example, 
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heterochromatic DNA has been associated with the methylation of H3K91 (i.e., H3K9me2 

or H3K9me3) (Rosenfeld et al. 2009). Although most histone modifications clearly alter 

the structure of the chromatin, more research is needed to achieve a full understanding 

of their effects. Zooming in even further, the chromosomes are also organized into cell-

type invariant topologically associated domains. The DNA within a topologically 

associated domain typically only form physical contacts within their domain (Dixon, 

Gorkin, and Ren 2016). 

2.2 Transcription 

While the genome contains the information for virtually all possible tasks, the DNA must 

be transcribed into ribonucleic acid (RNA) to enable the use of that information.  

2.2.1 Polymerase transcribes DNA into RNA 

Higher eukaryotes have three polymerases that use DNA as a template to produce RNA. 

They are aptly named RNA polymerase I, II and III. These RNA polymerases are all 

multiprotein complexes with 12-17 subunits and transcribe different kinds of RNA. RNA 

polymerase I only transcribes ribosomal RNA, which is needed for the translation of RNA 

into protein (Russell and Zomerdijk 2006). RNA polymerase III mostly transcribes non-

coding RNAs that are required for basic functions of the cell, like transfer RNA and 

spliceosome RNA, but also microRNAs and the transposable element family of short 

interspersed nuclear element (Dieci et al. 2007).  

However, the focus of this thesis is on transcripts produced by RNA polymerase II. The 

main reason for this is that RNA polymerase II transcribes messenger RNA (mRNA), 

which is the group of RNA that become translated into protein. The human cell has 

around 20,000 protein coding genes, all transcribed by RNA polymerase II (Nurk et al. 

2022). While RNA polymerase I and III transcribe RNA needed for baseline functions, RNA 

polymerase II enables the cell to specialize by transcribing only certain protein-coding 

genes into mRNA. 

2.2.2 Transcription is regulated in many steps 

Transcription requires many more proteins than RNA polymerase II to properly work. 

These other proteins are called general transcription factors and are needed to 

transcribe all mRNA.  

Transcription by RNA polymerase II consists of three main phases: Initiation, Elongation 

and Termination (Lee and Young 2000). Transcription starts by the assembly of the 

pre-initiation complex. The pre-initiation complex is usually composed of hundreds of 
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proteins. The minimal pre-initiation complex consists of RNA polymerase II and six of the 

general transcription factors: TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Most of these 

general transcription factors are themselves protein complexes and can therefore 

perform multiple required tasks each. There are many additional proteins involved in 

most cases, especially when enhancers are involved. Additional proteins involved in the 

pre-initiation complex include chromatin remodelers and the mediator complex (itself 

consisting of up to 26 subunits) (Allen and Taatjes 2015). The main tasks of the pre-

initiation complex are to recruit RNA polymerase II to the transcription start site by 

recognizing promoter motifs (TFIID, TFIIA) (Ossipow, Fonjallaz, and Schibler 1999), unwind 

and open the double-stranded DNA to provide access to the DNA template (TFIIE, TFIIF, 

TFIIH) (Lee and Young 2000) and properly position RNA polymerase II to the active site 

(TFIIB) (Bushnell et al. 2004). The RNA is then synthesized in a processive manner by 

RNA polymerase II using the DNA as a template (Kwak and Lis 2013). Before leaving the 

nucleus, the precursor mRNA goes through multiple post-transcriptional modifications 

before being exported to the cytoplasm for translation. Transcription is terminated after 

the recognition of the polyadenylation signal sequence AAUAAA present close to the 

end of the precursor mRNA (Bienroth, Keller, and Wahle 1993). The 3' end of the 

precursor mRNA is then cleaved and extended by approximately 250 untemplated 

adenosine nucleotides. A guanine nucleotide is also attached to the 5' end of the 

precursor mRNA with a 5' to 5' triphosphate linkage, which promotes nuclear export, 

translation and intron excision while preventing degradation (Visa et al. 1996; Bird et al. 

2016; Konarska, Padgett, and Sharp 1984; Shatkin 1976). The exons are spliced by the 

spliceosome to generate the final transcript, a process which generate great functional 

diversity even within the same gene (Marasco and Kornblihtt 2023).  

2.3 The genome defines its own regulation 

For the different cells in the human (or mammalian) body to be able to specialize in so 

many kinds of tasks, the regulation of which genes are active at any given time and any 

given cell must be very precise. With the discovery of mRNA as the physical and 

informational intermediate between the genetic storage unit of DNA and the functional 

unit of protein, the regulation of transcription was suggested as a mechanism to control 

the synthesis of protein (Cobb 2015). The first layer of regulation is whether the gene is 

physically available at all. Since the genome can be either tightly packed or unpacked by 

modifying the histone residues present on the nucleosome, the proper conformation of 

the DNA the gene consist of and the surrounding genomic region, is thought to be 

important for transcription to occur (Cremer and Cremer 2001). However, there are 

multiple additional layers of regulation which determine which genes are transcribed. 
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2.3.1 Transcription factors direct transcription 

Transcription factors are DNA-binding proteins that are involved in transcriptional 

regulation. Many transcription factors function as regulators which determine cell types, 

drive differentiation and control response pathways. While estimates vary, one review 

estimated that the human have around 1,700 transcription factor proteins which may be 

sorted into roughly 70 families (Lambert et al. 2018). Transcription factors work alone, or 

in a complex, to promote or repress the recruitment of RNA polymerase to specific 

genes. Transcription factors typically function by either directly recruiting RNA 

polymerase II or transcriptional cofactors (Frietze and Farnham 2011). Transcription 

factors recognize relatively short stretches of DNA sequences, known as binding motifs, 

and bind to either enhancer or promoter elements to effectively decode their 

instructions. The specificity of a transcription factor to its binding motif is typically 

multiple orders of magnitude higher compared to noncognate sequences (Geertz, 

Shore, and Maerkl 2012; Phair et al. 2004). In some cases, this may be the transcription 

factor's only method of transcriptional regulation: it may simply bind to a motif and 

block another transcription factor that would promote transcription (Ptashne 2011; 

Akerblom et al. 1988). However, it is also clear that in eukaryotic genomes the sequence 

of the binding motif alone is not sufficient. Indeed, most transcription factors only bind 

some of their target motifs present in the genome, with the rare exception being CTCF 

(Fu et al. 2008; T. H. Kim et al. 2007). Most motifs are 6-12 base pairs, which do not 

contain sufficient information content for the transcription factor to specifically bind to 

sites known to be regulated by that transcription factor (Wunderlich and Mirny 2009). 

This contrasts with the prokaryotic transcription factor landscape, where the binding 

motifs typically contain enough information to specifically bind to their intended target. 

In the eukaryotic case, the paradigm of multiple transcription factors cooperatively and 

synergistically binding to clusters of binding motifs to direct transcription is a much 

more favorable theory. Indeed, cis-regulatory regions usually contain many binding sites 

for multiple different transcription factors, and this fact alone has been used to predict 

cis-regulatory regions bioinformatically (Berman et al. 2002; Crowley, Roeder, and Bina 

1997; Wasserman and Fickett 1998; 1998). Furthermore, the ability for a transcription 

factor to promote or repress transcription is highly context specific. For example, the 

same transcription factor can recruit co-factors with opposite effects (Amati and Land 

1994). The details on how transcription factors interact with each other biochemically in 

different configurations are mostly lacking, and there is a current challenge to 

understand how this complex network of transcription factors work in detail. 

2.3.2 Promoters let transcription factors bind close to genes 

The core promoter is the DNA segment -40 to +40 base pairs within the transcriptional 

start site (Roeder 1996). This is the main region where the general transcription factors 

bind to the DNA. Core promoter elements are DNA motifs that support the assembly of 
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the pre-initiation complex and directs transcriptional initiation (Haberle and Stark 2018). 

The core promoter elements can be identified based on their sequence and location in 

relation to the transcription start site. There is no universally used element present at all 

genes. Instead, different genes use different core promoter elements to guide the pre-

initiation complex. There are broadly two different classes of genes in this respect, 

genes with a clearly defined core promoter (sharp) and genes with a broad and diffuse 

core promoter region (broad) (Haberle and Stark 2018). The sharp promoters are 

generally present in genes that are lineage-specific, while broad promoters are present 

in genes expressed ubiquitously (Carninci et al. 2006). The core promoter element that 

was first discovered, the TATA-box, has the consensus sequence 5'-TATAWAW-3' and 

is located 31 to 24 base pairs upstream of the transcription start site (Goldberg 1979; 

Bucher 1990). The TATA box is present in about 20% of human genes. Another core 

promoter, initiator, has the consensus sequence 5’-BBCABW-3’ and is present right on 

top of the transcription start site (Carninci et al. 2006; Vo ngoc et al. 2017). Other core 

promoters present in human like DRE, TCT, BREu and BREd, all have well defined 

consensus sequences and positions relative to the transcription start site (Parry et al. 

2010; Hirose et al. 1993; W. Deng 2005; Lagrange et al. 1998). The relevance of the DNA 

sequence of the core promoter downstream of the transcription start site has been 

unclear in humans. In Drosophila, the downstream DPE and MTE elements are clearly 

defined by a known location and consensus sequence but matches to these elements in 

the human genome are rarely observed (Sandelin et al. 2007). A challenge in addressing 

this seems to have been the inability to use over-representation methods to detect 

motifs. Recent machine learning approaches have identified an additional downstream 

core promoter element DPR, which overlap the DPE and MTE elements found in 

Drosophila (Vo ngoc et al. 2020). Interestingly, the part of the DPR motif that overlap the 

DPE element are very similar. Furthermore, the presence of DPR is associated with a lack 

of the TATA box, similar to the situation in Drosophila for the DPE element (Willy, 

Kobayashi, and Kadonaga 2000). 

2.3.3 Enhancers are clusters of transcription factor binding sites 

Enhancer elements are regulatory sequences of DNA that are often many kilobases or 

megabases away from their target gene and are used to activate the transcription of 

genes in a precise and sensitive manner. One pragmatic definition of enhancer is a 

cluster of binding sites for transcription factors.  

There are multiple different methods to detect enhancer regions in the genome and 

different to ways to predict whether the enhancer can be considered active in each cell 

type. By any measure, enhancers are ubiquitous throughout the genome. Based on co-
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occurrence of histone modifications H3K27ac2 and H3K4me13 as a marker for enhancers, 

a large surveying study found 43,011 enhancer candidates across the human genome. 

Furthermore, the activity of these enhancers were highly cell-type specific (The 

FANTOM Consortium 2014). A less conservative approach based on DNase I cleavage 

events found an average of around 330,000 intergenic regions per biosample that may 

be enhancers (Vierstra et al. 2020). The most recent phenomenon considered to define 

active enhancer regions is the detection of enhancer RNA, i.e., RNA from transcribed 

enhancer regions (T.-K. Kim et al. 2010). However, the detection enhancer RNA is difficult 

due to their short-lived nature and the lack of methods to efficiently detect them 

(Sartorelli and Lauberth 2020).  

While there are different theories on how the enhancer, directly or indirectly, interacts 

with the promoter region to promote transcription the most favored theory is enhancer-

promoter looping (Panigrahi and O’Malley 2021). In this model, the proteins bound by the 

enhancer and the promoter make physical contact and the protein-protein interactions 

then further facilitate transcription.  

Furthermore, enhancers typically do not interact outside of their topologically 

associated domain that put limits on which genes they may influence (Cavalheiro, Pollex, 

and Furlong 2021). Since the genome is a three-dimensional structure, folded and 

packed in a presumably quite pragmatic fashion, the enhancer might be close to the 

promoter despite their distant relative position on the linear genome.  

2.4 Transcription occurs in bursts 

The idea that non-genetic heterogeneity between single cells may arise due to 

stochastic fluctuations in mRNA molecules was introduced early (Spudich and Koshland 

1976); with contemporary observations using electron microscopy which found that the 

synthesis of multiple RNA molecules is initiated at one time and that there are discrete 

periods of activity and inactivity of transcription (Miller and Beatty 1969; McKnight and 

Miller Jr. 1979). A decade later, the observation of transcriptional heterogeneity among 

single cells in response to glucocorticoid stimulation started the investigation into 

transcriptional bursts that is still ongoing today (M. S. H. Ko 1991; M. S. Ko, Nakauchi, and 

Takahashi 1990).  

There are many studies examining how the genome, core promoter elements, enhancers 

and transcription factors influence the bursting behavior of genes.  Since transcriptional 

bursts have been observed throughout the tree of life (Sanchez and Golding 2013), it is 

likely that the basis for transcriptional bursting, at least in part, relies on some 

 

2 Acetylation of histone 3 lysine 27 
3 Methylation of histone 3 lysine 4 
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fundamental aspect of transcription that is consistent across all organisms. The 

interplay between transcription and torque on the DNA double helix may be a general 

cause of transcriptional bursting. When RNA polymerase transcribes DNA, torque is 

applied to the DNA double helix. This causes the DNA behind the RNA polymerase to 

become less tightly wound and the DNA in front of the polymerase to become more 

tightly wound. This phenomenon is called positive supercoiling and may be removed by 

a topoisomerase called DNA gyrase (Liu and Wang 1987). Since the activity of DNA 

gyrase is limiting, accumulation of positive supercoiling may result in stalling and then 

result in a burst of transcriptional activity. This mechanism has been shown to be 

sufficient to explain transcriptional burst in bacteria (Chong et al. 2014) and polymerase 

spacing has shown to be dependent on torsional stress in eukaryotes (Tantale et al. 

2016). 

Promoter elements are also involved in shaping transcriptional bursts. One study 

investigated the actin gene family present in the amoeba Dictyostelium discoideum and 

found that switching the promoters of genes within the family brought with it the 

transcriptional bursting dynamics for that gene (Tunnacliffe, Corrigan, and Chubb 2018). 

Due to being the first discovered, the most investigated element out of those is the 

TATA-box. One study found that the burst size are higher in genes whose core promoter 

region contain a TATA box and that a mutation in the TATA-box sequence decrease the 

burst size of the gene (Hornung et al. 2012).  

While the exact mechanism is still unclear, most studies suggest enhancer elements 

direct gene expression changes by affecting the frequency of transcriptional bursts for 

their target gene. This was first suggested by an early study that examined the effect of 

the SV40 enhancer on the probability of transcription of a target reporter gene (Walters 

et al. 1995). Recent publications support this as the most convincing explanation. One 

study visualized and measured the activity of multiple enhancers in living Drosophila 

embryos and observed dependence of burst frequency on the strength of the 

activating enhancer element (Fukaya, Lim, and Levine 2016). By forcing the physical 

contact of the 𝛽-globin enhancer to the 𝛽-globin gene in mouse cells, another 

experiment showed that raising the frequency of physical contact increases the burst 

frequency but not burst size (Bartman et al. 2016). However, physical contact between 

an enhancer element and its target gene may not be necessary to affect transcription 

(Alexander et al. 2019).  

Transcription factors seem to affect multiple aspects of transcriptional bursts. One 

paper suggests that burst frequency modulation by the translocation of transcription 

factors may be a general control strategy to coordinate responses to external stimuli by 

the study of the transcription factor Crz1 in yeast. They found that local calcium 

concentration modulated the frequency of Crz1 translocation into the nucleus, where 

each translocation resulted in a multi-gene transcription event (Cai, Dalal, and Elowitz 
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2008). The similar principle was observed in a modified version of the human cell line 

MCF7 with a PP7 reporter system for the GREB1 locus, where the concentration of 

estrogen was shown to modulate the frequency of GREB1 transcription in single cells 

(Fritzsch et al. 2018). Furthermore, transcription factors are usually a part of signaling 

pathways that respond to stimuli or give rise to periodical activity. The nature of the 

signaling pathway dictates the patterns of transcriptional bursts which are observed. 

Serum induction mediated by the transcription factor serum response factor leads to a 

transcriptional bursts of the 𝛽-actin gene (Kalo et al. 2015). They found a feedback loop 

where artificially low levels of 𝛽-actin leads to an increased transcriptional response. In 

another study, oscillations in NF-kB localization was shown to control the dynamics of 

gene expression of its targets by modulating the burst frequency of those genes, 

including its own negative regulator lkBa (Nelson et al. 2004). This was later also shown 

for glucocorticoids, a class of steroid hormones that can act as transcription factors, 

with translocation into the nucleus of the cell as the mechanism (Stavreva et al. 2019). 

Ultradian patterns in glucocorticoid concentration fluctuations led to transcriptional 

bursts of the same pattern. Another study also investigated the serum response factor 

for another gene, c-Fos, with the conclusion that transcription factor concentration 

modulates the burst frequency (Senecal et al. 2014). Furthermore, they found that the 

duration of the transcription factor binding event to the DNA binding domain and the 

strength of the activator domain influenced burst duration (𝑘!"") and initiation rate 

(𝑘#$%) respectively. The transcriptional response to DNA damage is regulated by the 

p53-Mdm2 system. As a response to DNA damage, the burst frequency of p53 

transcription was reported to increase proportional to the amount of DNA damage. In 

contrast to the study on c-Fos described above, the burst size and duration was found 

to be fixed and did not depend of the amount of damage (Lahav et al. 2004). 

2.4.1 The impact of transcriptional bursts on phenotype 

The initial inquiry into stochastic gene expression was to explain why cells with no 

genetic differences can be so different, even in the same environment. While there are 

surely additional factors which may contribute, stochastic gene expression is a clear 

contributor. One of the more discussed aspects of transcriptional bursting in this regard 

is its influence on the incomplete penetrance of genetic disorders. Incomplete 

penetrance is the case where only a fraction of carriers of a mutation develops its 

associated disease. This phenomenon is thought to be partly caused by stochasticity of 

gene expression. Transcriptional bursting gives rise to frequent monoallelic expression in 

diploid systems, which may have an impact on the disease penetrance (Q. Deng et al. 

2014). However, examples in literature are scarce.  One study used the Caenorhabditis 

elegans model animal to investigate the incomplete penetrance of mutations affecting 

intestinal specification. They could explain the incomplete penetrance by demonstrating 

that the variability in gene expression of the mutant alleles altered the topology of the 
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gene regulatory network that determines intestinal cell fate (Raj et al. 2010). The 

fluctuations of expression of mutant and wildtype alleles across a tissue may also 

introduce pathologies. For example, one cause of hypertrophic cardiomyopathy may be 

due to contractile heterogeneity among the individual cardiomyocytes because of 

transcriptional heterogeneity of mutant and wild type beta-myosin heavy chain 

expression among cells (Montag et al. 2018). 

In a non-disease setting, variability in gene expression could also be used as a strategy 

of adaptive evolution, where fluctuations of allele usage within a population may be used 

as a form of hedging against changes in the immediate environment (Bruijning et al. 

2020). From an evolutionary perspective, it might also be beneficial to conserve energy 

by not transcribing key genes constantly and instead use the RNA template for protein 

synthesis multiple times, with the precision of gene regulation as a trade-off (Hausser et 

al. 2019). Transcriptional bursts might also be used to generate diversity during 

differentiation of stem cells into various committed cell types, which is a concept 

applicable to most if not all organs in the body. The dynamics of fate commitment of 

differentiating cells may rely on transcriptional bursts to a significant extent. For 

example, the lineage commitment of T-cells was recently shown to depend on a 

stochastic rate-limiting cis-epigenetic mechanism at the level of individual gene loci. 

The activation probability of the gene Bcl11b was demonstrated to depend on a distal 

enhancer region that acts independently for each allele. Furthermore, the transcriptional 

activation of Bcl11b was also dependent on Notch signaling in-trans (Ng et al. 2018). 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 

2.5 Allelic expression 

Which copy of a gene the cell uses has been the subject of study for a long time. The 

first studied case was the allelic exclusion of antigen receptors of T and B lymphocytes 

(Pernis et al. 1965). During lymphocyte maturation, the immunoglobulin gene segments 

undergo recombination on each allele. Once a productive rearrangement has been 

achieved on one allele, further rearrangement on the other allele is prevented. In effect, 

only one allele of the immunoglobulin genes is expressed in mature lymphocytes 

(Vettermann and Schlissel 2010). There are also examples of genes that are only 

transcribed from the maternal or paternal allele, these genes are known as imprinted 

genes (Ferguson-Smith 2011). It has also been suggested that there are autosomal genes 

that show mitotically heritable monoallelic expression (here called fixed autosomal 

random monoallelic expression). These genes are suggested to have expression from 

only one allele in some clones while other clone show biallelic expression. One study 

based on SNP-sensitive microarrays found that up to 10% of autosomal genes exhibited 

fixed autosomal random monoallelic expression (Gimelbrant et al. 2007). Other studies 

showed fixed autosomal random monoallelic expression in mouse lymphoblasts, 

fibroblasts, human neural stem cells and mouse neural stem cells at similar rates (10%, 

2.1%, 1.6-2.2% and 2.4% respectively) (Zwemer et al. 2012; Jeffries et al. 2012; Li et al. 

2012). However, observations on the single-cell level contradict some of these findings. 

Early single cell experiments from the Sandberg lab showed that there is abundant 

monoallelic expression in the transcriptomes of single cells in mice (Q. Deng et al. 2014). 

However, most genes did not have a preferred allele to express. Instead, each allele 

appeared equally often with no obvious pattern. Later experiments on clonally 

expanded T-cells and fibroblasts showed very few genes that exhibited monoallelic 

expression which was mitotically stable (<1% of genes) (Reinius et al. 2016). These later 

experiments used newly developed single-cell sequencing methods, while the prior 

studies used either bulk RNA-sequencing or microarray technologies. The discrepancies 

between these findings have been discussed in the literature, and can be attributed to 

differences between methods and analysis (Vigneau et al. 2018; Reinius and Sandberg 

2018).
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2.6 X chromosome inactivation and upregulation 

Therian mammals, mouse and human included here, have two sex chromosomes, X and 

Y4 . Males have both the X and Y chromosome, while females have two X chromosomes. 

The presence of the Y chromosome, specifically the Y-linked gene SRY, determines the 

sex during development (Berta et al. 1990). Therefore, the Y chromosome is only ever 

present in one copy and the X chromosome is present in one copy in males and two 

copies in females. Out of the two sex chromosomes present in therian mammals, the X 

chromosome is considerably larger than the Y chromosome, have many more 

euchromatic regions and more protein-coding genes. They most likely evolved from a 

regular pair of autosomal chromosomes (Wallis, Waters, and Graves 2008). However, in 

the present day there is a low amount of homology between the two sex chromosomes. 

The only homologous areas are the pseudoautosomal regions present at the end of both 

chromosomes (Helena Mangs and Morris 2007). This allows the two sex chromosomes 

to pair up during meiosis and are the only areas which may undergo genetic 

recombination (Ciccodicola et al. 2000). This is presumably the cause of the small size 

of the Y chromosome, since the X chromosome may recombine in females, but the Y 

chromosome has lost most genes and degenerated (Graves 2006). 

However, this situation creates complications in terms of gene dosage. Importantly, 

most of the X-linked genes are not involved in sex determination and are required for 

basic cellular processes (Ross et al. 2005). The female cells effectively have twice the 

number of X-linked gene copies available to be transcribed and translated compared to 

males. One way the cell was handling this was detected in 1949, with the report of a 

"nucleolar satellite" found only in motor neurons of female cats and not male cats, later 

known as a Barr body (Barr and Bertram 1949). This Barr body was later identified to be a 

heterochromatic X chromosome (S. Ohno and Hauschka 1960). However, whether this X 

chromosome was of the paternal or maternal variant was not known. Based on clever 

observations regarding a number of X-linked mutations that affect the coat color of 

mice, Mary Lyon suggested that, at least in mice, either of the X chromosomes become 

heterochromatic early during embryogenesis. Since the heterozygous mutant mice have 

variegated coats, both the paternal and maternal X chromosome are inactivated in 

different cells (Lyon 1961). Later, Susumu Ohno hypothesized that the cell have two ways 

to cope with the unbalanced gene dosage on the X chromosome: one of the X 

chromosomes is inactivated in females and the genes on the single X chromosome have 

increased expression (Susumu Ohno 1967). The former is known as X chromosome 

inactivation, or Lyonization after Mary Lyon. This method of controlling gene dosage of 

X-linked genes is overwhelmingly established to be a correct theory in eutherian 

 

4 The monotremes have five pairs of sex chromosomes and don't ask me about monotremes. 
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mammals (Loda, Collombet, and Heard 2022). However, the same way there are many 

sex determination strategies in the animal kingdom, the details of this compensation 

differ between different species. The qualifier eutherian is needed because while 

marsupials inactivate one of their X chromosomes early in development, it is always the 

paternal X chromosome (Cooper et al. 1993). Interestingly, studies have observed the 

same imprinted inactivation of the paternal X chromosome in the mouse around the 4-8 

cell stage of the embryo (Okamoto et al. 2004). However, the paternal X is later 

reactivated, and random X chromosome inactivation take place in the late blastocyst 

stage. Humans do not seem to have this imprinted inactivation, but rather a 

transcriptional dampening of both X chromosomes before random X chromosome 

inactivation that probably takes place in about the same developmental time window as 

in the mouse (Petropoulos et al. 2016). For both human and mouse, X chromosome 

inactivation leads to mitotically heritable monoallelic expression for most X-linked 

genes. A few genes escape X chromosome inactivation and are also transcribed from 

the inactive X chromosome, albeit in lower abundance.  

The second mechanism Susumu Ohno suggested, the upregulation of the single X 

chromosome (X chromosome upregulation) has been much more debated (Pessia, 

Engelstädter, and Marais 2014). In contrast to X chromosome inactivation, which 

according to the 1949 letter to Nature "...may be detected with no more elaborate 

equipment than a compound microscope following staining of the tissue by the routine 

Nissl method", X chromosome upregulation first requires the accurate measurement of 

transcripts from X-linked and autosomal genes. The first analyses based on microarrays 

and RNA-sequencing data have reached conflicting results (Nguyen and Disteche 2006; 

Xiong 2010). This disagreement can to a large degree be attributed to what the proper 

comparison is. First, there is a question of what to compare to in the first place. Susumu 

Ohno’s hypothesis was based on the idea that these genes were originally present on an 

autosomal chromosome, and the proper comparison should therefore be to the 

ancestral gene (Susumu Ohno 1967). Most studies have settled on comparing the 

expression levels of the autosomal genes to the genes on the single active X 

chromosome. Furthermore, different studies have established different criteria for 

including genes in their analyses, leading to different conclusions. For example, 

compared to autosomal chromosomes, the X chromosome contains more genes with 

little or no gene expression (Kharchenko, Xi, and Park 2011). Other studies claim only 

some genes on the X chromosome need to be dosage compensated and focused on 

genes known to be a part of gene networks that include autosomal genes and are 

therefore presumably more sensitive to gene dosage (Pessia et al. 2012; Lin et al. 2012). 
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3 Research aims 
The aims of this thesis explore the use of transcriptomics to understand transcriptional 

bursting.  

Paper I: Can we use single-cell RNA sequencing data to infer transcriptional bursting 

parameters genome wide? How is transcriptional bursting encoded in the genome and 

in which way does it change with cell type and cell state? 

Paper II: Do bursts explain monoallelic expression and allelic imbalance? 

Paper III: How do burst kinetics change when gene dosage changes on the X 

chromosome? 

Paper IV: Can we use metabolic labelling in single cells to track newly transcribed RNA? 

Paper V: What are the advantages to studying newly transcribed RNA in the context for 

transcriptional bursting? 
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4 Materials and methods 
The studies which form this thesis mainly use mathematical modeling, single-cell RNA 

sequencing and bioinformatics to study transcriptional bursting. This section briefly 

describes the methods used in each area. 

4.1 Mathematical models for transcriptional bursting 

The theory of transcriptional bursting is tightly coupled to its corresponding 

mathematical models. In one sense, the mathematical models of transcriptional bursting 

determine the terminology used for describing it.  

4.2 The simplest model - the telegraph model 

Before describing the model of transcriptional bursting, I will start with the simpler 

models that may be used to quantitatively describe transcription and why they fail to 

capture the phenomenon of transcriptional bursts.  

 

The basic deterministic model of transcription includes two parameters: synthesis and 

degradation. It can be written down as the differential equation 

𝑑𝑥
𝑑𝑡
  =  𝛼  −  𝑥γ 

where 𝛼 is the synthesis rate, 𝛾 is the degradation rate and 𝑥 is the abundance of the 

RNA. The steady state of this model can easily be found to be the ratio between 

synthesis rate and the degradation rate, &
'
. However, this differential equation 

completely fails to capture any variability in expression observed in single cells. The 

simplest stochastic model of transcription replaces the two rate parameters above with 

exponentially distributed waiting times. This gives us the Poisson distribution with the 

parameter 𝜆 = &
'
. The mean stays the same as in the deterministic model while 

accounting for some variability. Precisely this model was suggested in early studies 

(Spudich and Koshland 1976). However, because the Poisson model assumes that the 

RNA molecules are synthesized independently of each other it fails to capture one 

aspect of variability present in transcriptional bursts, namely the bursts themselves. 

The model needs to be extended to account for transcriptional bursts. The simplest 

model of transcriptional bursts is called the telegraph model. In this model, the gene can 

either be in an off state or an on state (Peccoud and Ycart 1995). While in the on state 

the gene is synthesized at rate 𝑘#$% , and is not transcribed in the off state. The time until 

the system switches from one state to another is described by the exponential 

probability distribution with an associated 𝑘!"" and 𝑘!% rate respectively. Each 
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individual RNA molecule can also be degraded at the rate 𝛿. The steady state 

distribution is a mixture between a Beta and Poisson distribution. The beta random 

variable is governed by 𝑘!% and 𝑘!"" and effectively determines the availability of the 

gene to be transcribed. The Poisson distribution is determined by 𝑘#$% . When 𝑘!% is 

large, the distribution can be approximated by the Poisson distribution described above 

with 
(!"#
)

 as the parameter. This is interpretable as the gene always being available for 

transcription. When both 𝑘!% and 𝑘!"" are slower than the degradation rate, there are 

long periods of activity and inactivity. This is observed as a bimodal distribution of 

transcript abundance. The mean of the distribution is given by the fraction of time the 

gene is available for transcription times the synthesis rate divided by the degradation 

rate, ($#
($#*($%%

(!"#
)

. The two main units which will be discussed in this thesis are the burst 

frequency, 𝑘!% , and burst size, 
(!"#
($%%

, the average number of molecules produced during a 

burst.  

4.2.1 The simplest model can be extended in many ways 

While the telegraph model is the most frequently used model, there are extensions of 

this model which include refractory periods, splicing, cell division, dosage compensation 

and cell size (Friedman, Cai, and Xie 2006; Shahrezaei and Swain 2008; Stinchcombe, 

Peskin, and Tranchina 2012; Cao and Grima 2020). Not all these models are analytically 

tractable, and fewer offer computationally feasible inference methods. Indeed, the main 

advantage of using the telegraph model is the possibility to infer parameters using 

snapshot measurements, e.g., single-cell RNA sequencing or single molecule 

fluorescence in situ hybridization (smFISH). Then applying the moment method, 

maximum likelihood or Markov-Chain Monte-Carlo (Peccoud and Ycart 1995; Raj et al. 

2006; J. K. Kim and Marioni 2013; Gómez-Schiavon et al. 2017; Jiang, Zhang, and Li 2017; 

Vu et al. 2016). Although this requires the assumptions of stationarity and ergodicity 

(Dattani and Barahona 2017). Furthermore, the model can also be simplified. If we 

assume that the rate of gene deactivation is much faster than activation, 𝑘!"" ≫ 𝑘!% , this 

simplified model follows the negative binomial distribution (Shahrezaei and Swain 2008). 

The trade-off of this simplification is that the model can no longer generate bimodal 

distributions. Nonetheless, the negative binomial distribution is often used for analyzing 

single-cell RNA sequencing data (Love, Huber, and Anders 2014; Robinson and Smyth 

2007). 
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4.3 Primary and immortalized cells 

To study transcriptional bursts, we need to measure the amount of RNA transcribed for 

a given gene copy. However, since mammalian genomes are diploid, we need a way to 

distinguish RNA originating from the two alleles of a gene. Our approach was to use 

crosses of distantly related subspecies of the mus musculus species.  

Most often we crossed a female of the CAST/EiJ strain of mus musculus castaneus 

(southeastern Asian house mouse) with a male of the C57BL/6J strain of the mus 

musculus domesticus (western European house mouse) and used the first generation 

(F1) offspring of this cross. These two mice have many single-nucleotide variants that 

can be used to distinguish the alleles by sequencing (Keane et al. 2011). One experiment 

was done using a cell line derived from a F1 CAST/EiJ x 129SvEv cross, but the desired 

result is the same. 

The constituent papers have also used cell lines derived from human cells. The K562 cell 

line is a myelogenous leukemia cell line derived from a 53 year old female (Lozzio and 

Lozzio 1975) and the Jurkat T-cell cell line that was derived from a 14 year old male with 

leukemia (Schwenk and Schneider 1975). As the references report, both cell lines were 

established in the mid-1970s. However, these cell line do not provide allelic resolution. 

4.4 Single-cell sequencing to profile transcription with allelic 
resolution 

Single-cell sequencing enable the relatively unbiased quantification of the 

polyadenylated transcriptome5, where polyadenylated transcripts are reverse 

transcribed and amplified. Since most of the transcribed RNA is ribosomal RNA, it is 

important to provide a way to select only polyadenylated transcripts. This is done by 

using an oligo-dT as the primer in the reverse transcription reaction (Mortazavi et al. 

2008). After the first method of this kind was reported in 2009 (Tang et al. 2009), the 

overall field of single-cell sequencing has quickly evolved (Svensson, da Veiga Beltrame, 

and Pachter 2020). During my PhD studies, the state of the art has changed multiple 

times when it comes to both wet-lab and computational methods. Furthermore, most of 

the advances have focused on the development of highly scalable methods followed by 

shallow sequencing of individual cells to characterize cell types in tissues (Svensson, 

Vento-Tormo, and Teichmann 2018; Zhang, Ntranos, and Tse 2020). To study 

transcriptional bursting the experimental focus lies on capturing molecules at high 

sensitivity and detecting those molecules by sequencing each cell deeply. The most 

widely used single-cell sequencing protocol, offered by the company 10x Genomics, 

only captures the 3' end of the transcript (10x Genomics n.d.). For our experimental 

 

5 Methods which capture non-polyadenylated RNA exist but will not be discussed. Sorry Michael. 
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approach, this method would be unsuitable, since most single nucleotide 

polymorphisms which allow us to distinguish the allele of origin are not on the 3' end. 

Therefore, to capture the allelic expression for most genes, a method which give 

coverage over the whole transcript is preferred.  

4.4.1 The Smart-seq family of methods provide full-length coverage 

The Smart-seq family of methods is the most widely used full-length coverage single 

cell sequencing family of protocols (Ramsköld et al. 2012; Picelli 2013; Hagemann-Jensen 

et al. 2020; Hagemann-Jensen, Ziegenhain, and Sandberg 2022). The methods rely on a 

Moloney Murine Leukemia Virus-derived reverse transcriptase (RT) enzyme which often 

adds 2-5 un-templated nucleotides at the 3'-end of the complementary DNA when the 

5'-end of the RNA is reached, where the nucleotide cytosine is preferred (Schmidt and 

Mueller 1999). This allows the RT enzyme to switch the template to an oligonucleotide 

that has 3 riboguanosines at its 3'-end (template-switching oligonucleotide). The 

complementary DNA can then be amplified exponentially using primers targeting 

sequences present on the oligo-dT and template-switching oligonucleotide sequence. 

For short-read sequencing, the resulting pool of full-length complementary DNA is then 

tagmented with the enzyme Tn5 to obtain DNA fragments of a size appropriate for 

short-read sequencers. Optionally, the tagmentation step can be skipped and DNA 

library is then sequenced on a long-read sequencer. In the constituent papers, the 

methods which have been used are Smart-seq3 or a modified version of Smart-seq2 

that include a unique molecular identifier in the template-switching oligonucleotide 

(Hagemann-Jensen et al. 2020). The unique molecular identifier is of particular 

importance for the estimation of transcriptional bursting estimates since they enable 

the discrete counting of individual captured RNAs. 

4.5 Computational analysis of sequencing data 

After sequencing the complementary DNA of the transcripts present in the individual 

cells, the genes they correspond to need to be identified. This is done through aligning 

the sequencing reads to a reference genome. The human and mouse genomes have 

been sequenced and annotated quite extensively compared to most other organisms. 

Since transcripts are spliced co- and post-transcriptionally, naively aligning reads to the 

reference genome is not suitable. Therefore, multiple algorithms have been developed 

that are aware of splicing and can align spliced transcripts (Dobin et al. 2012; D. Kim et al. 

2019). More recent methods have been developed that perform pseudoalignment, 

which instead quantify the compatibility of the sequencing read with a transcript model 

without performing alignment to the reference genome (Bray et al. 2016; Patro et al. 

2017). All the analyses in the constituent papers have used the STAR software for 

alignment (Dobin et al. 2012). The aligned reads are then stored in the SAM format, which 

is the standard format for aligned sequencing reads. After alignment, the analyses make 
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extensive use of a vast number of software libraries to enable further processing, 

statistical inference, statistical modeling, and visualization (Virtanen et al. 2020; Harris et 

al. 2020; Hunter 2007). The constituent papers have used the programming languages 

Python, R and C, with most of the code being written in Python. 

4.6 Metabolic labeling 

Metabolic labeling is a concept that can be used to study nascent and new transcription 

of RNAs. A nucleotide analogue is introduced that is partly incorporated during 

transcription. The incorporation of the nucleotide analogue is then detected in some 

way to find which RNAs were produced during the metabolic labeling period. 

The first sequencing methods using metabolic labeling relied on the physical separation 

of labelled and unlabeled RNA. In the method TT-seq, thiol-specific biotinylation is 

followed by affinity purification, and ensures the analyzed complementary DNA 

originates from newly synthesized RNA (Schwalb et al. 2016). 

Single cell applications require very efficient ways to separate the new and old 

transcriptomes. One recently developed approach moves the separation step from a 

physical separation to a computational separation after sequencing. By introducing a 

chemical modification step mutations are introduced into the newly synthesized RNAs, 

which can be computationally distinguished by a mismatch to the reference genome. 

The method SLAM-seq was the first method to use this approach. SLAM-seq uses 4-

thiouridine followed by an alkylation reaction to induce T-to-C mismatches in reads 

corresponding to newly synthesized molecules (Herzog et al. 2017). Other methods have 

been used that adapt this approach to single cells (Erhard et al. 2019). Lastly, another 

method has been developed that use very efficient click chemistry followed by biotin 

pull-down to physically separate newly transcribed and old RNA (Battich et al. 2020). 
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4.7 Ethical considerations 

Most of my projects involved sequencing cells from a first-generation offspring of two 

distantly related strains of Mus musculus, C57BL/6J and CAST. This cross does not lead 

to any phenotype which the mouse might suffer from. Cells are collected from these 

mice either post-mortem or from the embryo. The ethical permit under which we did 

these studies deemed certain activities to be of moderate severity, since some 

experiments detailed in the permit may require multiple injections of the same animal. 

However, all the procedures needed for my projects were of mild severity. Nothing is 

done to the mice that would make them likely to experience any short-term moderate 

pain, suffering or distress, or long-term mild pain, suffering or distress. 

Furthermore, some of my projects are based on already existing data. The analyses in 

the first submission of Paper | were all done with already existing data, published or 

otherwise. The questions asked by the reviewers prompted us to generate new data (i.e., 

use more mice) to answer them. We only did this when it was clear to us that it was 

necessary to confirm the validity of the results. This data was then used for Paper III 

which explores other aspects of that dataset, Paper III also uses existing data from 

another study (Chen et al. 2016). In this regard my projects make large use of the reduce 

principle of humane animal research, since reusing and reanalyzing data in new ways 

reduce the number of animals needed and total animal suffering at the same level of 

scientific output. 
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5 Results 

5.1 Paper I 

In Paper I, we wanted to investigate the use of single cell RNA sequencing data to study 

transcriptional bursting, which first required the development of novel statistical 

algorithms. To perform statistical inference of transcriptional bursting, I developed a 

likelihood approach to infer parameters using the two-state model. This estimation 

strategy differed from previous efforts in multiple ways (Jiang, Zhang, and Li 2017; J. K. 

Kim and Marioni 2013). The moment likelihood used in (Jiang, Zhang, and Li 2017) had the 

undesired property of sometimes producing negative rate estimates. Some other 

advantages were that the profile likelihood technique allowed me to obtain confidence 

intervals on the point estimates. The likelihood approach also allowed us to compare 

parameters from two different conditions by comparing their relative likelihoods. While 

(J. K. Kim and Marioni 2013) used a Markov-Chain Monte-Carlo method that produces 

more stable estimates than the moment method (although more time consuming), the 

data we applied our approach to was much more deeply sequenced than previous 

studies and had an order of magnitude more cells. 

I inferred transcriptional burst kinetics from data obtained from the CASTxBL/6J F1 

crossbreed for 7,186 genes based on 224 fibroblast cells prepared using a modified 

version of Smart-seq2. I found the parameters to agree with the previous studies that 

had been done either on single genes or based on exogenous genes. The burst size 

ranged between 1-10 RNAs per burst across genes. After scaling the parameters by the 

degradation rate to obtain the parameters in an absolute time scale, I found that an 

allele bursts on average every 6 hours. Interestingly, the 𝑘!"" parameter was almost 

always much larger than 𝑘!% indicating that genes are often idle with occasional bursts 

of transcription. 

I next investigated the effect of core promoter elements on burst size. I found that the 

TATA core promoter substantially increases burst size while burst frequency is not 

affected. This effect is increased by the presence of the Initiator core promoter element, 

while the Initiator element does not have any effect by itself. No effect was observed 

based on mean expression or on the level of burst frequency. Furthermore, I found that 

there was a gene-length dependent effect on burst size, which was not confounded by 

spliced mRNA length. 

We linked enhancer activity to burst frequency regulation using multiple approaches. I 

compared burst frequency and size of genes expressed in two different cell types: 

fibroblasts and embryonic stem cells (n = 4,854 genes in common). I observed that the 

main factor that changes between cell types is burst frequency. We performed smFISH 

on a small number of X-linked genes in male cells. The differences in burst frequency 
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and size found between the two cell types based on the single cell RNA sequencing data 

were corroborated by the smFISH data, although the absolute parameter values were 

somewhat different. Then, I used H3K27ac as a marker of enhancer activity detected by 

chromatin immunoprecipitation sequencing and used a previously defined enhancer-

to-gene map to assign enhancer activity to genes and their corresponding bursting 

parameters. I compared the relative change in normalized read density over the linked 

enhancer regions to the relative change in bursting parameters across cell types. The 

enhancer activity of enhancers linked to genes expressed in both cell types were highly 

correlated with a corresponding change in burst frequency.  

Second, I found that the density of strain specific single nucleotide variants was higher 

in enhancers of genes with allelic differences in burst frequency compared to genes 

with similar kinetics.  

Last, we inferred transcriptional kinetics in a murine embryonic stem cell line (CAST/EiJ x 

129SvEv) with a Sox2 enhancer deletion on the CAST allele. We found that the resulting 

reduction in Sox2 gene expression was due to a reduction in burst frequency. To 

support this finding, I simulated observations where the corresponding reduction in 

mean expression was either only due to a reduction in burst frequency or size. The 

simulations also supported the finding that the enhancer deletion resulted in a reduction 

in burst frequency. 
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5.2 Paper II 

In Paper II, we wanted to investigate to which extent transcriptional bursts explain 

monoallelic expression from autosomal genes. The transcriptional burst inference 

approach from Paper I enabled us to study how transcriptional bursts generate patterns 

of monoallelic and biallelic expression in single cells. For this paper, we used an 

expanded dataset of 682 primary fibroblast cells (F1 offspring of CAST/EiJ and C57BL/6J 

crosses) using the Smart-seq3 method. 

I first calculated the theoretical probabilities of observing monoallelic expression 

according to the two-state model throughout the parameter landscape. When I 

compared these theoretical values to real data, I found them to agree highly; the 

observed amount of monoallelic expression closely followed the predicted amount. 

The theoretical calculations showed that the amount of monoallelic expression could be 

modulated by both changes in burst frequency and size. Therefore, I compared the 

estimated burst frequency and size to the observed fractions of allelic expression and 

found that burst frequency was the main component of transcriptional bursts that 

affects monoallelic and biallelic expression. Furthermore, both burst frequency and size 

contributed to the relative amounts of allelic expression.  

I reasoned that cell-type specific gene regulation would lead to an underestimation of 

biallelic expression if we naively applied the prediction procedure to a heterogeneous 

group of cells composed of multiple cell types. To investigate this, we sequenced the 

transcriptomes of single cells derived from the skin of the F1 CASTxC57/BL6 mouse 

(Smart-seq2, n = 354 cells). We were able to classify the cells into 9 distinct cell types. I 

first tried to predict the amount of biallelic expression for each gene for the whole 

population of cells, with the false assumption that all the cells are under identical 

regulation. I found that genes that are known to be ubiquitously expressed in mouse 

tissues have biallelic expression consistent with the predicted amount compared to 

randomly sampled genes, many of which are presumably under cell-type specific 

regulation. Furthermore, I found that most cell-type clusters have biallelic expression 

closer to the predicted amount than cells sampled randomly from the whole dataset. By 

intentionally mixing cell-types with large differences in the transcriptomes, I was able to 

increase the discrepancy between the predicted and observed amount of biallelic 

expression (e.g., T-cells and Interfollicular epidermis). However, mixing similar cell types 

(e.g., Interfollicular epidermis and Lower hair follicle) did not affect this discrepancy. 

There have been multiple reports of widespread monoallelic expression and allelic 

imbalance that are specific to clonal populations of cells. I theoretically investigated if 

this can be explained solely by variability in expression due to transcriptional bursting. I 

used the estimated parameter from one of the alleles, CAST, to simulate observations 

from two alleles in silico. Since the underlying parameters are identical, any observed 
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differences would be due to the statistical variability in the process. I found that for 

lowly expressed genes, it was common to observe large deviations from equal allelic 

expression. This effect decreased as the number of simulated observations increased. 
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5.3 Paper III 

In Paper III, we used the data generated in Paper I to investigate the upregulation of the X 

chromosome in male and female cells in the context of transcriptional bursting, and its 

relation to X chromosome inactivation in females. 

The female cells were classified based on which X chromosome had been deactivated. 

Then we compared the allelic expression levels of genes on the active X chromosome to 

the autosomal genes from the same allele. Both the female active X alleles and the male 

X chromosome consistently showed a higher mean expression as a group compared to 

autosomal genes by all considered analyses. These analyses included cell-normalized 

expression levels, differences in the overall mean expression distributions, a sample 

size-matched permutation test, and pairwise tests between individual chromosomes. 

This indicated a chromosome-wide upregulation of the X chromosome (X chromosome 

upregulation). 

I then estimated the transcriptional burst kinetic parameters for each group of cells and 

consistently found higher burst frequencies for the X-linked genes compared to 

autosomal genes. No burst size differences were detected, and the burst frequency 

difference was still detected after accounting for differences in degradation. 

To investigate whether this upregulation was a fixed or dynamic mechanism, we studied 

X chromosome upregulation while X chromosome inactivation was taking place. We 

hypothesized that upregulation was dependent on the number of active X 

chromosomes. We used a previously published dataset of cells constituting the 

developmental trajectory from epiblast to the neuronal cell type based on the same F1 

crossbreed. During this developmental process, X inactivation take place and the 

number of active X chromosomes are reduced from two to one. To study the 

relationship between X chromosome upregulation and X chromosome inactivation, we 

classified the cells based on stages of X inactivation using X-linked expressed strain-

specific variants and measured the extent of X chromosome upregulation within those 

groups. Before X chromosome inactivation, there is no detectable X chromosome 

upregulation as measured by a chromosome wide difference in burst frequency. 

However, as X chromosome inactivation progressed, the active X chromosome showed 

upregulation by burst frequency proportional to the extent of X chromosome 

inactivation. 
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5.4 Paper IV 

In Paper IV, we developed a new metabolic labeling method in single cells. The recent 

advance in metabolic labeling to use sequencing itself as the read out instead of 

physical separation made it easier to adapt to single cells (Herzog et al. 2017). We 

developed a single cell sequencing protocol called NASC-seq that uses T>C 

mismatches to the reference genome, introduced by the nucleotide analogue 4-

thiouridine during culturing and converted during RT, to computationally distinguish 

reads originating from newly transcribed molecules from reads originating from pre-

existing molecules. The protocol was developed based on the Smart-seq2 protocol, with 

the addition of steps specific to metabolic labeling and some other modifications. I 

implemented a statistical model and data processing pipeline to accurately quantify the 

proportion of newly transcribed reads while accounting for errors introduced during 

library preparation and sequencing.  

We first applied the NASC-seq protocol to the K562 cell line to demonstrate the 

successful labeling of newly transcribed RNA, based on the statistical measures (signal-

to-noise) and with examples of genes with known high and low turnover. The statistical 

model was needed to correct measurements from individual cells arising due to errors. 

We then applied the protocol to Jurkat T-cells stimulated with phorbol myristate 

acetate and ionomycin while simultaneously exposed to 4-thiouridine. We found that 

the expected response genes, for example EGR1 and FOS, were exclusive detected as 

newly transcribed in the stimulated cells. We computationally separated the new and 

old transcriptomes. The old transcriptomes of stimulated and un-stimulated cells 

clustered together after dimensionality reduction by principal component analysis, while 

the new transcriptomes both clustered separately. We identified early response genes 

from the new transcriptomes of stimulated cells and found this modality to have much 

better sensitivity to detect the downregulation of genes compared to using the total 

transcriptome. 

I also measured global RNA replacements rates in single unstimulated Jurkat T-cells. At 

30 minutes and 60 minutes, a median of 6.5% and 10.8% of the cell transcriptomes had 

been replaced by new RNA. The replacement rates for individual genes were much more 

variable compared to cells, where some genes had no RNA replaced and a few had all 

the RNA replaced. The median replacement was 10.2% and 16.5%, for the 30- and 60-

minute labeling conditions respectively. 
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5.5 Paper V 

In Paper V, we developed the next iteration of NASC-seq, NASC-seq2, and applied the 

method to study transcriptional bursting of newly transcribed RNA. 

The developed method, NASC-seq2 is based on the Smart-seq3 protocol with the 

addition of the metabolic labeling specific steps, which in turn require a dilution step to 

avoid a high concentration of certain reagents, such as dimethyl sulfoxide, in the 

downstream reactions which are required for the alkylation to occur. I developed 

multiple tools to efficiently process NASC-seq2 data. First, I developed a software 

named stitcher.py that is able to reconstruct molecules based on a shared unique 

molecular identifier (Larsson and Sandberg 2020; Hagemann-Jensen et al. 2020). In 

contrast to Paper IV, due to the molecule resolution NASC-seq2 provides we can now 

count new and old RNA molecules instead of the proportion of reads that are new and 

old. I developed a statistical test using the model from Paper IV to decide which 

molecules were old and new. 

We first applied this method to 613 individual K562 cells and found that NASC-seq2 

detects on average 2000 more genes per cells compared to NASC-seq at the same 

sequencing depth (100,000 total reads). We had a high power to detect individual 

molecules as new, over 90% power for most genes.  

We then applied NASC-seq2 to 8,916 individual primary fibroblasts (C57BL/6 x 

CAST/EiJ) with 4sU labeling for 2 hours. We detected around 100,000 molecules per 

cell, with 12.5% of molecules detected as newly transcribed. To infer kinetics based on 

the newly transcribed RNA, we developed a new inference method that depends on the 

labeling time and the molecule count distribution. This approach allowed us to 

investigate 𝑘!"" and 𝑘#$% separately, which we were unable to do on total RNA 

measurements. We found that 𝑘#$% was correlated with burst size but 𝑘!"" was not, 

indicating that synthesis rates specify the number of RNAs produced in a burst while 

the window of synthesis stay invariant.  

To study co-bursting, we investigate newly transcribed RNA for gene-pairs as a function 

of their genomic distance. We found that without allelic comparisons, there are many 

gene-pairs that exhibit positive correlation in new transcription. However, after 

correcting for correlations seen in non-meaningful trans gene and allele pairs (e.g., gene 

1, allele 1 compared to gene 2, allele 2), this observed correlation is effectively removed. 

Among the remaining pairs, there are several paralogues that warrant further 

investigation, but there is no evidence for genome-wide co-bursting of genes. 
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6 Discussion 
In Paper I, we demonstrated the use of single-cell RNA sequencing to infer the kinetics 

of transcriptional bursting. Furthermore, we discovered several fundamental aspects of 

transcriptional bursting using this approach.  

We were able to further understand how the genome partially encodes for the kinetics 

of transcriptional bursts. The first example we find is the effect core promoter elements 

have on burst size. This effect was not detected on the level of mean expression, clearly 

showing how studying transcriptional bursting give a richer characterization of 

transcription than studying the average output from single cells. In Paper I, we only 

reported the effect of two core promoter elements (TATA and Initiator). It is likely a 

more sophisticated analysis than linear regression will detect the contribution of other 

core promoter elements to transcriptional bursting than the ones studied here.  

The second example was the role of enhancers in dictating the burst frequency of 

genes. It is important to point out that while the results are convincing on the genome-

wide level, the effects of specific enhancer elements or transcription factors on 

individual genes is much less clear, except for the Sox2 example. The assignment of 

enhancers to genes were done with the best methods known at the time and can be 

improved. In this context, it would be exciting to study how enhancers usage change in 

the context of cell type and state to affect burst kinetics. 

Considering the many steps required to produce an RNA transcript, the emerging 

picture is that promoters and enhancers affect separate parts of this process. The most 

straightforward interpretation is that enhancers are involved in forming the pre-initiation 

complex, while core promoters are mainly involved in later steps that ultimately ensure 

the successful release of polymerase II to transcribe the gene. This would be the first 

approximation, but there will surely come more studies which paint a more complicated 

picture. In particular, the role of proximal promoters is not that clear. Importantly, it is 

now possible to study these kinds of questions using a genome-wide assay.  

Gene regulation, broadly defined as the epigenetic state, is inherited by somatic cells. 

There are a few established cases of allele level regulation that is somatically inherited, 

but whether this is a widespread phenomenon shared by most genes is a debated topic. 

In Paper II, we investigated the effect of transcriptional bursting on monoallelic 

expression and show that monoallelic expression can be fully explained by 

transcriptional bursts. Furthermore, the main contribution to monoallelic expression is 

the frequency of bursts. This result argues against any widespread allele level regulation 

that is stable across cell divisions. On closer inspection, including the results in Figure 5 

of Paper II, lowly expressed genes may show allele specific expression which is only due 

to biological noise in the process of transcription itself. On top of that, technical 
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variation in the sequencing assay would only exacerbate this problem. Indeed, the genes 

reported in other studies to exhibit somatically heritable allele regulation were as a 

group lowly expressed in the studied cell types.  

However, monoallelic expression may have effects on cell behavior in shorter time 

frames than cell generations. Consistent with previous studies, we find that monoallelic 

expression is abundant. As a result, only one transcript allele is present at any given time 

in a single cell for many genes. If there are functional differences between the two alleles, 

the capability of that cell to perform a given task may fluctuate over time. This might not 

be relevant for genes that perform tasks with high redundancy but would be crucial for 

genes that perform a very specific task during a limited time window. Transcription 

factors involved during development are a good example. It is interesting to speculate 

that genetic disorders that show incomplete penetrance may be explained by the 

fluctuations of available alleles due to transcriptional bursting. 

Another topic Paper II briefly discussed was the possibility to understand homogeneity 

of a group of cells by exploiting monoallelic expression. Since highly expressed genes in 

general have a high burst frequency, both alleles tend to be detected. Therefore, 

detecting a skew in the monoallelic-to-biallelic ratio is evidence of heterogeneity in the 

regulation of that gene. The results in the paper were convincing, this corollary is 

certainly reflected in the data, but not immediately useful to apply more broadly. An 

extension along this line of reasoning would be to develop an explanatory model which 

explicitly models the biallelic expression due to transcriptional bursting. 

The hypothesis that the X chromosome needs to be upregulated after X chromosome 

inactivation to compensate for haplo-insufficiency and maintain fitness was first 

presented by Susumu Ohno in 1967. This idea has been investigated using multiple 

different methods and the results have been conflicting. In Paper III, we showed how 

genome-wide transcriptional burst inference allows us to detect chromosome-level 

regulation of transcriptional bursting. Interestingly, we showed that the X chromosome 

upregulation is responsive to the number of active X chromosomes in the cell. 

Furthermore, the change in gene expression is driven by changes in the frequency of 

transcriptional bursts. This shows the capability of the cell to detect gene dosage 

conditions and adapt the regulation of transcriptional bursting. 

The measured upregulation was around 1.4x, which is considerably lower than the output 

of two active alleles (2x). It is plausible that while 1.4x does not fully compensate for the 

inactive allele, the overall up-regulation is sufficient to ensure the gene products are 

present to the extent needed by the cell. Another explanation may be the involvement 

of multiple other modes of upregulation, for example in translation or degradation of the 

RNA transcripts. However, exactly how the cell would increase translation or decrease 

degradation of transcripts that are specifically X-linked is unclear.  
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How the transcriptional bursting on the X chromosome is modulated to achieve higher 

burst frequencies is the next obvious question. In the paper we hypothesize based on 

Paper I that enhancers are involved in dynamically changing the burst frequency. As the 

inactivated X progressively becomes inaccessible and heterochromatic, it is likely the 

local concentration of trans-acting factors shifts to the active X. This is further 

supported by the observation that X-linked genes that escape inactivation are 

expressed at a lower burst frequency from the inactive X compared to the active X. 

Indeed, follow-up studies confirmed that the degree of upregulation is tightly linked to 

the degree of inactivation. 

It is possible the modulation of transcriptional bursting is a general adaptive strategy to 

compensate for any aneuploidy. The most interesting applications for this direction 

would be trisomy 21 (Down's syndrome) and copy-number variation or chromosomal 

aberrations often observed in cancer. 

In Paper IV, we developed a method to detect newly transcribed RNA in single cells. This 

method was greatly improved in Paper V, where we studied the transcriptional burst 

kinetics of newly transcribed RNA in single cells.  

In Paper IV, we used metabolic labelling to measure the new transcriptomes of cells after 

the exposure of a perturbation (phorbol myristate acetate and ionomycin). Only the new 

transcriptome contained the actual perturbation response, while the old transcriptome 

was similar to the transcriptome of the control cells. This experiment demonstrated the 

power of using metabolic labelling to study transcriptional responses to perturbations, 

in particular the ability to study only the transcriptome after perturbation. We found 

that many responses, especially downregulation of genes, were hidden on the total 

transcriptome level but clearly visible on the new transcriptome level. Responses of 

genes that are already transcribed but increase in expression were also more readily 

detected. Using metabolic labelling for this purpose gives a more accurate and richer 

characterization of transcriptional responses to perturbations and should in my opinion 

be the standard. Furthermore, a future study could use the improved NASC-seq2 to 

study the burst kinetics of these kind of transcriptional responses.  

In the time between Paper IV and Paper V, the amount of data we could collect 

exploded. The main accelerators of this increase in throughput were the capacity of 

short-read sequencing and the extensive work in the wetlab to automate protocols 

(Hagemann-Jensen, Ziegenhain, and Sandberg 2022). I must say I was responsible for 

neither of these. However, it did require a massive improvement of the performance of 

multiple algorithms and software components in the analysis workflow, as they could not 

scale to the new requirements.  

The improved NASC-seq2 protocol together with a new inference framework allowed us 

to study transcriptional bursting genome-wide on a more detailed level. The time-
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resolved nature of the metabolic labelling data enabled us to investigate 𝑘!"" and 𝑘#$% 

separately instead of studying burst size (𝑘#$%/𝑘!""). We found that all genes with 

inferable kinetics exhibited transcriptional bursting, where the duration of bursting is 

relatively constant, but the rate of synthesis is variable. Based on this result and other 

studies, I argue that genes are all transcribed in bursts and that there is no such thing as 

"bursty genes" and "non-bursty genes", since there is no evidence in the literature there 

is any another mode of transcription. 

The idea that genes are transcribed simultaneously is usually discussed in the context of 

transcriptional hubs. There are countless of articles where this concept is discussed. 

Genes needed for the same task tends to be localized near each other on the 

chromosome and active in the same cell type. However, there has been no clear 

evidence that genes tend to be transcribed together. NASC-seq2 can show that this is 

not the case in general. Furthermore, we show that allelic resolution is needed for this 

analysis, since extrinsic factors may introduce correlations on the gene level. However, 

paralogues in proximity seem to be a special case. Since paralogues share an ancestral 

gene, they are often regulated by the same factors which would enable co-regulation. 

The coordination of transcription in time could be of large significance for certain 

cellular tasks and it is possible the relative chromosomal location of the paralogues that 

show co-bursting are under selective pressure specifically to facilitate this 

phenomenon. 

One drawback of single cell RNA sequencing is its inherently destructive nature. To 

subject the cell to the protocol it must be lysed. Therefore, it is not possible to probe 

the cell at a future time point since we killed it. Metabolic labelling is a strategy to 

recover some time-resolved information even though the transcriptome can only be 

sampled once per cell. However, this approach does have some limitations. To provide 

the metabolic label, the cells typically must be in culture. The label could in theory be 

administered in vivo to an animal model or organoids, although that approach would 

require extensive validation that the label is successfully delivered to all target cells and 

in equal concentration. This clearly restricts the kind of experiments one could perform, 

for example studies on primary human cells are not possible. Nevertheless, metabolic 

labelling in single cells is an excellent approach to study fundamental aspects of 

transcription and transcriptional responses to perturbations. 
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7 Conclusions 
In conclusion, my thesis has explored the possibility to measure transcriptional burst 

kinetics with single cell transcriptomics, which led to many insights into mechanisms of 

transcription in mammalian cells. The techniques are still improving, and it will be 

exciting to further discover more underlying principles of transcriptional bursting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

 



 

 35 

8 Acknowledgements 
Dear Reader, welcome to the most important section of the thesis. This is probably the 

first, and possibly only, section you will read of this book. I’m saying this because that’s 

what I do most of the time. It takes a village to get through a PhD, no matter what, and 

the people you’re surrounded by become very important. 

The first person to acknowledge is my main supervisor Rickard. Thank you for the 

opportunity to do by PhD in your lab and for all the support along the way. In particular, 

the freedom to pursue many different questions and projects. But also, for how you 

helped me manage through the more difficult periods of my PhD during the pandemic 

and afterwards. 

I would also like to acknowledge my two co-supervisors, Yudi and Yishao. Although you 

both did not end up that involved in my PhD studies, you both helped me gain 

fundamental skills to successfully complete my PhD. 

Next, I would like to say thank you to everyone in the Sandberg lab. Especially in the 

context of this thesis all your feedback on the text and your remarkable turn-around 

time due to my last-minute request for help. I was not surprised my request would end 

up being last-minute nor that you all would be there to help in time. 

More specifically, in a particular order but please do not read too much into it, I’d like to 

thank Leo. I think the speech that I held at your graduation party said most of what I 

would like to say here. In the abridged version, I’d like to thank you for all the adventures 

we’ve had together and all the support. Excited to see what you do next! Gert-Jan, 

thank you for our extensive collaboration on the constitutive papers. You’ve always been 

available for discussions, feedback, and mentoring. Michael, thanks for all the hugs. I 

probably needed those. Also thank you for the science and the mentoring. Your work 

ethic has been inspiring. Thank you, Daniel, for the work together and your deep 

theoretical knowledge that I think enrich the whole lab. Thank you, Christoph, for all the 

fun rants about academia. Jens, your PhD thesis was inspiring for me while doing my 

own PhD, and I’d like to thank you for that. Thank you, Juliane, and good luck on the 

remainder of your PhD. Thank you Gösta for being the lab guru. Thanks to the recent 

students in the lab, Paloma, Salomé, Gustav and Arnold. 

Of course, there have been members of the lab which have since left. Thank you Per, for 

your crucial smFISH, abundance of Dill Chips, and our shared support for Liverpool FC. 

YNWA. Best of luck at Astra. Björn, thank you for teaching me about the X chromosome 

and how interesting it is, and for your mentoring. You’ve been doing great in your own 

lab, and I am excited to see what more will come. Lisa, thank you for the collaborations. 

Hope you’re doing well in Germany! Thanks to the medical student Oscar, which helped 

with computational work. Thanks to Åsa and Omid for your work on Paper I. Thank you 



 

36 

Ping for being a good desk neighbor for some time. Thank you, Emma, for your lab admin 

which was always helpful to me. Thanks to the two previous PhD students, Mtakai and 

Ilgar, for being role models during the early part of my PhD studies. 

I’d also like to acknowledge people from the Frisén lab, past and present. Although none 

of the constitutive papers include any of them, they’ve been the lab’s neighbours for the 

last five years. Ionut, thank you for all the dinners and parties and conversations (this 

also goes to Johannes). Enric, for your inquisitive mind and shared love of food. 

Giuseppe (and Alexandra), thanks for the great conversations about science, life and 

Dungeons and Dragons! Thanks to other lab members: Margherita, Johanna, Moa, 

Camilla, Carl-Johan, Qirong, Martyna, Mathew, Helena, Jeff, Marta and Embla for 

lunch, conversation and lots of other things. And thanks to Jonas as well! 

To the former members of the Bergmann lab, Marion and Enikö, you were both great lab 

neighbours and friends (you’re both still friends but you used to be too). Even though I’m 

not a member of your book club I’m always curious to know what’s next. 

Thanks to all the teachers at the master’s programme where I taught for four years, 

especially thank you Lars-Arne. I learned a lot while teaching myself. Also, thank you 

Linda and Matti. 

I’d also like to thank all the co-authors that haven’t yet been mentioned: Chloe, Bing, 

Tina, Tim, Maria, Christos, Michael, Katja and Patrick. 

I would now like to acknowledge some friends. 

Bobby! Even though I think we both gave each other terrible first impressions, those 

didn’t matter. You’ve been a great friend since we met, and I’ve always enjoyed your 

stories. I have great memories from my trip to Bulgaria and would love to visit again. I’m 

happy to see you graduate too and returning to medicine. Thank you, Nathan, for all the 

fun we’ve had together. I’m looking forward to seeing you graduate a couple of days 

after me. Lucas. We have spent an unhealthy amount of time playing World of Warcraft 

together. But it was worth it because you’re a great guy to hang out with. Let me know if 

you want to try the hardcore version that they’re releasing soon. I heard you can play as 

a duo. Thanks Kevin, for crypto news, Svelte community drama and being a cool dude. 

Adam, thank you and good luck on your own defense later this year! Oscar, it’s been a 

long time since we first met during my bachelor’s studies. Thank you for many 

philosophical conversations. I look forward to your graduation as well! Richard, thanks 

for being a supportive and kind friend ever since high school. Emelie and Dominyka, 

thank you both. Thank you, Sara. For anyone that knows me and decided to look up my 

thesis to read it but hasn’t been mentioned, thank You. 



 

 37 

Tack Mamma, för att du uppfostrade mig till den person jag är idag. Lät mig vara nyfiken 

och undra fritt. Tack till min syster Agnes.  

Finally, Ilke, there are many reasons to thank you. I think most of them are better said at 

our wedding. I’d like to thank you for all your support all these years. There have been 

ups and downs during my PhD, and you’ve been there to celebrate the successes and 

motivated me in harder moments.  I can’t express enough how important you’ve been. 

Seni seviyorum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

 

 

 

 

 

 

 



 

 39 

9 References 
10x Genomics. n.d. “Single Cell Gene Expression.” 10x Genomics. Accessed May 17, 2023. 

https://www.10xgenomics.com/products/single-cell-gene-expression. 

Akerblom, Ingrid E., Emily P. Slater, Miguel Beato, John D. Baxter, and Pamela L. Mellon. 
1988. “Negative Regulation by Glucocorticoids Through Interference with a CAMP 
Responsive Enhancer.” Science 241 (4863): 350–53. 
https://doi.org/10.1126/science.2838908. 

Alexander, Jeffrey M, Juan Guan, Bingkun Li, Lenka Maliskova, Michael Song, Yin Shen, Bo 
Huang, Stavros Lomvardas, and Orion D Weiner. 2019. “Live-Cell Imaging Reveals 
Enhancer-Dependent Sox2 Transcription in the Absence of Enhancer Proximity.” 
ELife 8 (May): e41769. https://doi.org/10.7554/eLife.41769. 

Allen, Benjamin L., and Dylan J. Taatjes. 2015. “The Mediator Complex: A Central 
Integrator of Transcription.” Nature Reviews Molecular Cell Biology 16 (3): 155–66. 
https://doi.org/10.1038/nrm3951. 

Amati, Bruno, and Hartmut Land. 1994. “Myc—Max—Mad: A Transcription Factor Network 
Controlling Cell Cycle Progression, Differentiation and Death.” Current Opinion in 
Genetics & Development 4 (1): 102–8. https://doi.org/10.1016/0959-
437X(94)90098-1. 

Babu, Arvind, and Ram S. Verma. 1987. “Chromosome Structure: Euchromatin and 
Heterochromatin.” In International Review of Cytology, edited by G. H. Bourne, K. 
W. Jeon, and M. Friedlander, 108:1–60. Academic Press. 
https://doi.org/10.1016/S0074-7696(08)61435-7. 

Barr, Murray L., and Ewart G. Bertram. 1949. “A Morphological Distinction between 
Neurones of the Male and Female, and the Behaviour of the Nucleolar Satellite 
during Accelerated Nucleoprotein Synthesis.” Nature 163 (4148): 676–77. 
https://doi.org/10.1038/163676a0. 

Bartman, Caroline R., Sarah C. Hsu, Chris C.-S. Hsiung, Arjun Raj, and Gerd A. Blobel. 2016. 
“Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced 
Chromatin Looping.” Molecular Cell 62 (2): 237–47. 
https://doi.org/10.1016/j.molcel.2016.03.007. 

Battich, Nico, Joep Beumer, Buys de Barbanson, Lenno Krenning, Chloé S. Baron, Marvin E. 
Tanenbaum, Hans Clevers, and Alexander van Oudenaarden. 2020. “Sequencing 
Metabolically Labeled Transcripts in Single Cells Reveals MRNA Turnover 
Strategies.” Science 367 (6482): 1151–56. https://doi.org/10.1126/science.aax3072. 

Berman, Benjamin P., Yutaka Nibu, Barret D. Pfeiffer, Pavel Tomancak, Susan E. Celniker, 
Michael Levine, Gerald M. Rubin, and Michael B. Eisen. 2002. “Exploiting 
Transcription Factor Binding Site Clustering to Identify Cis-Regulatory Modules 
Involved in Pattern Formation in the Drosophila Genome.” Proceedings of the 
National Academy of Sciences 99 (2): 757–62. 
https://doi.org/10.1073/pnas.231608898. 

Berta, Philippe, J. Boss Hawkins, Andrew H. Sinclair, Anne Taylor, Beatrice L. Griffiths, Peter 
N. Goodfellow, and Marc Fellous. 1990. “Genetic Evidence Equating SRY and the 



 

40 

Testis-Determining Factor.” Nature 348 (6300): 448–50. 
https://doi.org/10.1038/348448a0. 

Bienroth, S, W Keller, and E Wahle. 1993. “Assembly of a Processive Messenger RNA 
Polyadenylation Complex.” The EMBO Journal 12 (2): 585–94. 

Bird, Jeremy G., Yu Zhang, Yuan Tian, Natalya Panova, Ivan Barvík, Landon Greene, Min Liu, 
et al. 2016. “The Mechanism of RNA 5′ Capping with NAD+, NADH, and 
Desphospho-CoA.” Nature 535 (7612): 444–47. 
https://doi.org/10.1038/nature18622. 

Bray, Nicolas L., Harold Pimentel, Páll Melsted, and Lior Pachter. 2016. “Near-Optimal 
Probabilistic RNA-Seq Quantification.” Nature Biotechnology 34 (5): 525–27. 
https://doi.org/10.1038/nbt.3519. 

Bruijning, Marjolein, C. Jessica E. Metcalf, Eelke Jongejans, and Julien F. Ayroles. 2020. 
“The Evolution of Variance Control.” Trends in Ecology & Evolution 35 (1): 22–33. 
https://doi.org/10.1016/j.tree.2019.08.005. 

Bucher, Philipp. 1990. “Weight Matrix Descriptions of Four Eukaryotic RNA Polymerase II 
Promoter Elements Derived from 502 Unrelated Promoter Sequences.” Journal of 
Molecular Biology 212 (4): 563–78. https://doi.org/10.1016/0022-2836(90)90223-
9. 

Bushnell, David A., Kenneth D. Westover, Ralph E. Davis, and Roger D. Kornberg. 2004. 
“Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 
Angstroms.” Science 303 (5660): 983–88. 
https://doi.org/10.1126/science.1090838. 

Cai, Long, Chiraj K. Dalal, and Michael B. Elowitz. 2008. “Frequency-Modulated Nuclear 
Localization Bursts Coordinate Gene Regulation.” Nature 455 (7212): 485–90. 
https://doi.org/10.1038/nature07292. 

Cao, Zhixing, and Ramon Grima. 2020. “Analytical Distributions for Detailed Models of 
Stochastic Gene Expression in Eukaryotic Cells.” Proceedings of the National 
Academy of Sciences 117 (9): 4682–92. https://doi.org/10.1073/pnas.1910888117. 

Carninci, Piero, Albin Sandelin, Boris Lenhard, Shintaro Katayama, Kazuro Shimokawa, 
Jasmina Ponjavic, Colin A M Semple, et al. 2006. “Genome-Wide Analysis of 
Mammalian Promoter Architecture and Evolution.” Nature Genetics 38 (6): 626–
35. https://doi.org/10.1038/ng1789. 

Cavalheiro, Gabriel R, Tim Pollex, and Eileen EM Furlong. 2021. “To Loop or Not to Loop: 
What Is the Role of TADs in Enhancer Function and Gene Regulation?” Current 
Opinion in Genetics & Development, Genome Architecture and Expression, 67 
(April): 119–29. https://doi.org/10.1016/j.gde.2020.12.015. 

Chen, Geng, John Paul Schell, Julio Aguila Benitez, Sophie Petropoulos, Marlene Yilmaz, 
Björn Reinius, Zhanna Alekseenko, et al. 2016. “Single-Cell Analyses of X 
Chromosome Inactivation Dynamics and Pluripotency during Differentiation.” 
Genome Research 26 (10): 1342–54. https://doi.org/10.1101/gr.201954.115. 

Chong, Shasha, Chongyi Chen, Hao Ge, and X. Sunney Xie. 2014. “Mechanism of 
Transcriptional Bursting in Bacteria.” Cell 158 (2): 314–26. 
https://doi.org/10.1016/j.cell.2014.05.038. 



 

 41 

Ciccodicola, Alfredo, Maurizio D’Esposito, Teresa Esposito, Fernando Gianfrancesco, 
Carmela Migliaccio, Maria Giuseppina Miano, Maria Rosaria Matarazzo, et al. 2000. 
“Differentially Regulated and Evolved Genes in the Fully Sequenced Xq/Yq 
Pseudoautosomal Region.” Human Molecular Genetics 9 (3): 395–401. 
https://doi.org/10.1093/hmg/9.3.395. 

Cobb, Matthew. 2015. “Who Discovered Messenger RNA?” Current Biology 25 (13): R526–
32. https://doi.org/10.1016/j.cub.2015.05.032. 

Cooper, D. W., P. G. Johnston, J. M. Watson, and J. A. M. Graves. 1993. “X-Inactivation in 
Marsupials and Monotremes.” Seminars in Developmental Biology 4 (2): 117–28. 
https://doi.org/10.1006/sedb.1993.1014. 

Cremer, T., and C. Cremer. 2001. “Chromosome Territories, Nuclear Architecture and 
Gene Regulation in Mammalian Cells.” Nature Reviews Genetics 2 (4): 292–301. 
https://doi.org/10.1038/35066075. 

Crowley, Evelyn M, Kathryn Roeder, and Minou Bina. 1997. “A Statistical Model for 
Locating Regulatory Regions in Genomic DNA.” Journal of Molecular Biology 268 
(1): 8–14. https://doi.org/10.1006/jmbi.1997.0965. 

Dattani, Justine, and Mauricio Barahona. 2017. “Stochastic Models of Gene Transcription 
with Upstream Drives: Exact Solution and Sample Path Characterization.” Journal 
of The Royal Society Interface 14 (126): 20160833. 
https://doi.org/10.1098/rsif.2016.0833. 

Deng, Q., D. Ramsköld, B. Reinius, and R. Sandberg. 2014. “Single-Cell RNA-Seq Reveals 
Dynamic, Random Monoallelic Gene Expression in Mammalian Cells.” Science 
343. https://doi.org/10.1126/science.1245316. 

Deng, W. 2005. “A Core Promoter Element Downstream of the TATA Box That Is 
Recognized by TFIIB.” Genes & Development 19 (20): 2418–23. 
https://doi.org/10.1101/gad.342405. 

Dieci, Giorgio, Gloria Fiorino, Manuele Castelnuovo, Martin Teichmann, and Aldo Pagano. 
2007. “The Expanding RNA Polymerase III Transcriptome.” Trends in Genetics 23 
(12): 614–22. https://doi.org/10.1016/j.tig.2007.09.001. 

Dixon, Jesse R., David U. Gorkin, and Bing Ren. 2016. “Chromatin Domains: The Unit of 
Chromosome Organization.” Molecular Cell 62 (5): 668–80. 
https://doi.org/10.1016/j.molcel.2016.05.018. 

Dobin, Alexander, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali 
Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. 2012. “STAR: Ultrafast 
Universal RNA-Seq Aligner.” Bioinformatics 29 (1): 15–21. 
https://doi.org/10.1093/bioinformatics/bts635. 

Erhard, Florian, Marisa A. P. Baptista, Tobias Krammer, Thomas Hennig, Marius Lange, 
Panagiota Arampatzi, Christopher S. Jürges, Fabian J. Theis, Antoine-Emmanuel 
Saliba, and Lars Dölken. 2019. “ScSLAM-Seq Reveals Core Features of 
Transcription Dynamics in Single Cells.” Nature 571 (7765): 419–23. 
https://doi.org/10.1038/s41586-019-1369-y. 

Ferguson-Smith, Anne C. 2011. “Genomic Imprinting: The Emergence of an Epigenetic 
Paradigm.” Nature Reviews. Genetics 12 (8): 565–75. 
https://doi.org/10.1038/nrg3032. 



 

42 

Friedman, Nir, Long Cai, and X. Sunney Xie. 2006. “Linking Stochastic Dynamics to 
Population Distribution: An Analytical Framework of Gene Expression.” Physical 
Review Letters 97 (16): 168302. https://doi.org/10.1103/PhysRevLett.97.168302. 

Frietze, Seth, and Peggy J. Farnham. 2011. “Transcription Factor Effector Domains.” In A 
Handbook of Transcription Factors, edited by Timothy R. Hughes, 261–77. 
Subcellular Biochemistry. Dordrecht: Springer Netherlands. 
https://doi.org/10.1007/978-90-481-9069-0_12. 

Fritzsch, Christoph, Stephan Baumgärtner, Monika Kuban, Daria Steinshorn, George Reid, 
and Stefan Legewie. 2018. “Estrogen-dependent Control and Cell-to-cell 
Variability of Transcriptional Bursting.” Molecular Systems Biology 14 (2): e7678. 
https://doi.org/10.15252/msb.20177678. 

Fu, Yutao, Manisha Sinha, Craig L. Peterson, and Zhiping Weng. 2008. “The Insulator 
Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across 
the Human Genome.” PLOS Genetics 4 (7): e1000138. 
https://doi.org/10.1371/journal.pgen.1000138. 

Fukaya, Takashi, Bomyi Lim, and Michael Levine. 2016. “Enhancer Control of 
Transcriptional Bursting.” Cell 166 (2): 358–68. 
https://doi.org/10.1016/j.cell.2016.05.025. 

Geertz, Marcel, David Shore, and Sebastian J. Maerkl. 2012. “Massively Parallel 
Measurements of Molecular Interaction Kinetics on a Microfluidic Platform.” 
Proceedings of the National Academy of Sciences 109 (41): 16540–45. 
https://doi.org/10.1073/pnas.1206011109. 

Gimelbrant, Alexander, John N. Hutchinson, Benjamin R. Thompson, and Andrew Chess. 
2007. “Widespread Monoallelic Expression on Human Autosomes.” Science (New 
York, N.Y.) 318 (5853): 1136–40. https://doi.org/10.1126/science.1148910. 

Goldberg, M.L. 1979. Sequence Analysis of Drosophila Histone Genes. Thesis. Stanford 
University. 

Gómez-Schiavon, Mariana, Liang-Fu Chen, Anne E. West, and Nicolas E. Buchler. 2017. 
“BayFish: Bayesian Inference of Transcription Dynamics from Population 
Snapshots of Single-Molecule RNA FISH in Single Cells.” Genome Biology 18 (1). 
https://doi.org/10.1186/s13059-017-1297-9. 

Haberle, Vanja, and Alexander Stark. 2018. “Eukaryotic Core Promoters and the 
Functional Basis of Transcription Initiation.” Nature Reviews Molecular Cell 
Biology 19 (10): 621–37. https://doi.org/10.1038/s41580-018-0028-8. 

Hagemann-Jensen, Michael, Christoph Ziegenhain, Ping Chen, Daniel Ramsköld, Gert-Jan 
Hendriks, Anton J. M. Larsson, Omid R. Faridani, and Rickard Sandberg. 2020. 
“Single-Cell RNA Counting at Allele and Isoform Resolution Using Smart-Seq3.” 
Nature Biotechnology 38 (6): 708–14. https://doi.org/10.1038/s41587-020-0497-
0. 

Hagemann-Jensen, Michael, Christoph Ziegenhain, and Rickard Sandberg. 2022. 
“Scalable Single-Cell RNA Sequencing from Full Transcripts with Smart-
Seq3xpress.” Nature Biotechnology 40 (10): 1452–57. 
https://doi.org/10.1038/s41587-022-01311-4. 



 

 43 

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, 
David Cournapeau, Eric Wieser, et al. 2020. “Array Programming with NumPy.” 
Nature 585 (7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2. 

Hausser, Jean, Avi Mayo, Leeat Keren, and Uri Alon. 2019. “Central Dogma Rates and the 
Trade-off between Precision and Economy in Gene Expression.” Nature 
Communications 10 (1): 68. https://doi.org/10.1038/s41467-018-07391-8. 

Helena Mangs, A, and Brian J Morris. 2007. “The Human Pseudoautosomal Region (PAR): 
Origin, Function and Future.” Current Genomics 8 (2): 129–36. 

Herzog, Veronika A., Brian Reichholf, Tobias Neumann, Philipp Rescheneder, Pooja Bhat, 
Thomas R. Burkard, Wiebke Wlotzka, Arndt von Haeseler, Johannes Zuber, and 
Stefan L. Ameres. 2017. “Thiol-Linked Alkylation of RNA to Assess Expression 
Dynamics.” Nature Methods 14 (12): 1198–1204. 
https://doi.org/10.1038/nmeth.4435. 

Hirose, F., M. Yamaguchi, H. Handa, Y. Inomata, and A. Matsukage. 1993. “Novel 8-Base Pair 
Sequence (Drosophila DNA Replication-Related Element) and Specific Binding 
Factor Involved in the Expression of Drosophila Genes for DNA Polymerase Alpha 
and Proliferating Cell Nuclear Antigen.” The Journal of Biological Chemistry 268 
(3): 2092–99. 

Hornung, G., R. Bar-Ziv, D. Rosin, N. Tokuriki, D. S. Tawfik, M. Oren, and N. Barkai. 2012. 
“Noise-Mean Relationship in Mutated Promoters.” Genome Research 22 (12): 
2409–17. https://doi.org/10.1101/gr.139378.112. 

Hunter, John D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science & 
Engineering 9 (3): 90–95. https://doi.org/10.1109/MCSE.2007.55. 

International Human Genome Sequencing Consortium. 2004. “Finishing the Euchromatic 
Sequence of the Human Genome.” Nature 431 (7011): 931–45. 
https://doi.org/10.1038/nature03001. 

Jeffries, Aaron R., Leo W. Perfect, Julia Ledderose, Leonard C. Schalkwyk, Nicholas J. Bray, 
Jonathan Mill, and Jack Price. 2012. “Stochastic Choice of Allelic Expression in 
Human Neural Stem Cells.” Stem Cells (Dayton, Ohio) 30 (9): 1938–47. 
https://doi.org/10.1002/stem.1155. 

Jiang, Yuchao, Nancy R. Zhang, and Mingyao Li. 2017. “SCALE: Modeling Allele-Specific 
Gene Expression by Single-Cell RNA Sequencing.” Genome Biology 18 (1): 74. 
https://doi.org/10.1186/s13059-017-1200-8. 

Kalo, Alon, Itamar Kanter, Amit Shraga, Jonathan Sheinberger, Hadar Tzemach, Noa Kinor, 
Robert H. Singer, Timothée Lionnet, and Yaron Shav-Tal. 2015. “Cellular Levels of 
Signaling Factors Are Sensed by β-Actin Alleles to Modulate Transcriptional Pulse 
Intensity.” Cell Reports 11 (3): 419–32. https://doi.org/10.1016/j.celrep.2015.03.039. 

Keane, Thomas M., Leo Goodstadt, Petr Danecek, Michael A. White, Kim Wong, Binnaz 
Yalcin, Andreas Heger, et al. 2011. “Mouse Genomic Variation and Its Effect on 
Phenotypes and Gene Regulation.” Nature 477 (7364): 289–94. 
https://doi.org/10.1038/nature10413. 

Kharchenko, Peter V., Ruibin Xi, and Peter J. Park. 2011. “Evidence for Dosage 
Compensation between the X Chromosome and Autosomes in Mammals.” 
Nature Genetics 43 (12): 1167–69. https://doi.org/10.1038/ng.991. 



 

44 

Kim, Daehwan, Joseph M. Paggi, Chanhee Park, Christopher Bennett, and Steven L. 
Salzberg. 2019. “Graph-Based Genome Alignment and Genotyping with HISAT2 
and HISAT-Genotype.” Nature Biotechnology 37 (8): 907–15. 
https://doi.org/10.1038/s41587-019-0201-4. 

Kim, Jong Kyoung, and John C Marioni. 2013. “Inferring the Kinetics of Stochastic Gene 
Expression from Single-Cell RNA-Sequencing Data.” Genome Biology 14 (1): r7. 
https://doi.org/10.1186/gb-2013-14-1-r7. 

Kim, Tae Hoon, Ziedulla K. Abdullaev, Andrew D. Smith, Keith A. Ching, Dmitri I. Loukinov, 
Roland D. Green, Michael Q. Zhang, Victor V. Lobanenkov, and Bing Ren. 2007. 
“Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human 
Genome.” Cell 128 (6): 1231–45. https://doi.org/10.1016/j.cell.2006.12.048. 

Kim, Tae-Kyung, Martin Hemberg, Jesse M. Gray, Allen M. Costa, Daniel M. Bear, Jing Wu, 
David A. Harmin, et al. 2010. “Widespread Transcription at Neuronal Activity-
Regulated Enhancers.” Nature 465 (7295): 182–87. 
https://doi.org/10.1038/nature09033. 

Ko, M. S., H. Nakauchi, and N. Takahashi. 1990. “The Dose Dependence of Glucocorticoid-
Inducible Gene Expression Results from Changes in the Number of 
Transcriptionally Active Templates.” The EMBO Journal 9 (9): 2835–42. 
https://doi.org/10.1002/j.1460-2075.1990.tb07472.x. 

Ko, Minoru S.H. 1991. “A Stochastic Model for Gene Induction.” Journal of Theoretical 
Biology 153 (2): 181–94. https://doi.org/10.1016/S0022-5193(05)80421-7. 

Konarska, Maria M., Richard A. Padgett, and Phillip A. Sharp. 1984. “Recognition of Cap 
Structure in Splicing in Vitro of MRNA Precursors.” Cell 38 (3): 731–36. 
https://doi.org/10.1016/0092-8674(84)90268-X. 

Kwak, Hojoong, and John T. Lis. 2013. “Control of Transcriptional Elongation.” Annual 
Review of Genetics 47: 483–508. https://doi.org/10.1146/annurev-genet-110711-
155440. 

Lagrange, T., A. N. Kapanidis, H. Tang, D. Reinberg, and R. H. Ebright. 1998. “New Core 
Promoter Element in RNA Polymerase II-Dependent Transcription: Sequence-
Specific DNA Binding by Transcription Factor IIB.” Genes & Development 12 (1): 
34–44. https://doi.org/10.1101/gad.12.1.34. 

Lahav, Galit, Nitzan Rosenfeld, Alex Sigal, Naama Geva-Zatorsky, Arnold J Levine, Michael 
B Elowitz, and Uri Alon. 2004. “Dynamics of the P53-Mdm2 Feedback Loop in 
Individual Cells.” Nature Genetics 36 (2): 147–50. https://doi.org/10.1038/ng1293. 

Lambert, Samuel A., Arttu Jolma, Laura F. Campitelli, Pratyush K. Das, Yimeng Yin, Mihai 
Albu, Xiaoting Chen, Jussi Taipale, Timothy R. Hughes, and Matthew T. Weirauch. 
2018. “The Human Transcription Factors.” Cell 172 (4): 650–65. 
https://doi.org/10.1016/j.cell.2018.01.029. 

Larsson, Anton JM, and Rickard Sandberg. 2020. “Stitcher.Py.” Zenodo. 
https://doi.org/10.5281/zenodo.3765223. 

Lee, T. I., and R. A. Young. 2000. “Transcription of Eukaryotic Protein-Coding Genes.” 
Annual Review of Genetics 34: 77–137. 
https://doi.org/10.1146/annurev.genet.34.1.77. 



 

 45 

Li, Sierra M., Zuzana Valo, Jinhui Wang, Hanlin Gao, Chauncey W. Bowers, and Judith 
Singer-Sam. 2012. “Transcriptome-Wide Survey of Mouse CNS-Derived Cells 
Reveals Monoallelic Expression within Novel Gene Families.” PloS One 7 (2): 
e31751. https://doi.org/10.1371/journal.pone.0031751. 

Lin, Fangqin, Ke Xing, Jianzhi Zhang, and Xionglei He. 2012. “Expression Reduction in 
Mammalian X Chromosome Evolution Refutes Ohno’s Hypothesis of Dosage 
Compensation.” Proceedings of the National Academy of Sciences 109 (29): 
11752–57. https://doi.org/10.1073/pnas.1201816109. 

Liu, L. F., and J. C. Wang. 1987. “Supercoiling of the DNA Template during Transcription.” 
Proceedings of the National Academy of Sciences 84 (20): 7024–27. 
https://doi.org/10.1073/pnas.84.20.7024. 

Loda, Agnese, Samuel Collombet, and Edith Heard. 2022. “Gene Regulation in Time and 
Space during X-Chromosome Inactivation.” Nature Reviews Molecular Cell 
Biology 23 (4): 231–49. https://doi.org/10.1038/s41580-021-00438-7. 

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold 
Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15 (12): 
550. https://doi.org/10.1186/s13059-014-0550-8. 

Lozzio, CB, and BB Lozzio. 1975. “Human Chronic Myelogenous Leukemia Cell-Line with 
Positive Philadelphia Chromosome.” Blood 45 (3): 321–34. 
https://doi.org/10.1182/blood.V45.3.321.321. 

Luger, Karolin, Armin W. Mäder, Robin K. Richmond, David F. Sargent, and Timothy J. 
Richmond. 1997. “Crystal Structure of the Nucleosome Core Particle at 2.8 Å 
Resolution.” Nature 389 (6648): 251–60. https://doi.org/10.1038/38444. 

Lyon, M. F. 1961. “Gene Action in X-Chromosome of the Mouse (Mus Musculus L.).” Nature 
190. https://doi.org/10.1038/190372a0. 

Marasco, Luciano E., and Alberto R. Kornblihtt. 2023. “The Physiology of Alternative 
Splicing.” Nature Reviews Molecular Cell Biology 24 (4): 242–54. 
https://doi.org/10.1038/s41580-022-00545-z. 

McKnight, Steven L., and Oscar L. Miller Jr. 1979. “Post-Replicative Nonribosomal 
Transcription Units in D. Melanogaster Embryos.” Cell 17 (3): 551–63. 
https://doi.org/10.1016/0092-8674(79)90263-0. 

Miller, O. L., and B. R. Beatty. 1969. “Visualization of Nucleolar Genes.” Science 164 (3882): 
955–57. https://doi.org/10.1126/science.164.3882.955. 

Montag, Judith, Kathrin Kowalski, Mirza Makul, Pia Ernstberger, Ante Radocaj, Julia Beck, 
Edgar Becker, et al. 2018. “Burst-Like Transcription of Mutant and Wildtype 
MYH7-Alleles as Possible Origin of Cell-to-Cell Contractile Imbalance in 
Hypertrophic Cardiomyopathy.” Frontiers in Physiology 9: 359. 
https://doi.org/10.3389/fphys.2018.00359. 

Mortazavi, Ali, Brian A. Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. 
2008. “Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq.” 
Nature Methods 5 (7): 621–28. https://doi.org/10.1038/nmeth.1226. 

Nelson, D. E., A. E. C. Ihekwaba, M. Elliott, J. R. Johnson, C. A. Gibney, B. E. Foreman, G. 
Nelson, et al. 2004. “Oscillations in NF-KappaB Signaling Control the Dynamics of 



 

46 

Gene Expression.” Science (New York, N.Y.) 306 (5696): 704–8. 
https://doi.org/10.1126/science.1099962. 

Ng, Kenneth KH, Mary A Yui, Arnav Mehta, Sharmayne Siu, Blythe Irwin, Shirley Pease, 
Satoshi Hirose, Michael B Elowitz, Ellen V Rothenberg, and Hao Yuan Kueh. 2018. “A 
Stochastic Epigenetic Switch Controls the Dynamics of T-Cell Lineage 
Commitment.” ELife 7: e37851. https://doi.org/10.7554/elife.37851. 

Nguyen, D. K., and C. M. Disteche. 2006. “Dosage Compensation of the Active X 
Chromosome in Mammals.” Nat. Genet 38. https://doi.org/10.1038/ng1705. 

Nurk, Sergey, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla 
Mikheenko, Mitchell R. Vollger, et al. 2022. “The Complete Sequence of a Human 
Genome.” Science 376 (6588): 44–53. https://doi.org/10.1126/science.abj6987. 

Ohno, S., and T. S. Hauschka. 1960. “Allocycly of the X-Chromosome in Tumors and 
Normal Tissues*.” Cancer Research 20 (4): 541–45. 

Ohno, Susumu. 1967. Sex Chromosomes and Sex-Linked Genes. Springer. 

Okamoto, Ikuhiro, Arie P. Otte, C. David Allis, Danny Reinberg, and Edith Heard. 2004. 
“Epigenetic Dynamics of Imprinted X Inactivation During Early Mouse 
Development.” Science 303 (5658): 644–49. 
https://doi.org/10.1126/science.1092727. 

Ossipow, Vincent, Philippe Fonjallaz, and Ueli Schibler. 1999. “An RNA Polymerase II 
Complex Containing All Essential  Initiation Factors Binds to the Activation 
Domain of  PAR Leucine Zipper Transcription Factor  Thyroid Embryonic Factor.” 
Molecular and Cellular Biology 19 (2): 1242–50. 

Panigrahi, Anil, and Bert W. O’Malley. 2021. “Mechanisms of Enhancer Action: The Known 
and the Unknown.” Genome Biology 22 (1): 108. https://doi.org/10.1186/s13059-
021-02322-1. 

Parry, T. J., J. W. M. Theisen, J.-Y. Hsu, Y.-L. Wang, D. L. Corcoran, M. Eustice, U. Ohler, and 
J. T. Kadonaga. 2010. “The TCT Motif, a Key Component of an RNA Polymerase II 
Transcription System for the Translational Machinery.” Genes & Development 24 
(18): 2013–18. https://doi.org/10.1101/gad.1951110. 

Patro, Rob, Geet Duggal, Michael I. Love, Rafael A. Irizarry, and Carl Kingsford. 2017. 
“Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression.” 
Nature Methods 14 (4): 417–19. https://doi.org/10.1038/nmeth.4197. 

Peccoud, J., and B. Ycart. 1995. “Markovian Modeling of Gene-Product Synthesis.” 
Theoretical Population Biology 48 (2): 222–34. 
https://doi.org/10.1006/tpbi.1995.1027. 

Pernis, B., G. Chiappino, A. S. Kelus, and P. G. Gell. 1965. “Cellular Localization of 
Immunoglobulins with Different Allotypic Specificities in Rabbit Lymphoid 
Tissues.” The Journal of Experimental Medicine 122 (5): 853–76. 
https://doi.org/10.1084/jem.122.5.853. 

Pessia, Eugénie, Jan Engelstädter, and Gabriel A. B. Marais. 2014. “The Evolution of X 
Chromosome Inactivation in Mammals: The Demise of Ohno’s Hypothesis?” 
Cellular and Molecular Life Sciences 71 (8): 1383–94. 
https://doi.org/10.1007/s00018-013-1499-6. 



 

 47 

Pessia, Eugénie, Takashi Makino, Marc Bailly-Bechet, Aoife McLysaght, and Gabriel A. B. 
Marais. 2012. “Mammalian X Chromosome Inactivation Evolved as a Dosage-
Compensation Mechanism for Dosage-Sensitive Genes on the X Chromosome.” 
Proceedings of the National Academy of Sciences 109 (14): 5346–51. 
https://doi.org/10.1073/pnas.1116763109. 

Petropoulos, Sophie, Daniel Edsgärd, Björn Reinius, Qiaolin Deng, Sarita Pauliina Panula, 
Simone Codeluppi, Alvaro Plaza Reyes, Sten Linnarsson, Rickard Sandberg, and 
Fredrik Lanner. 2016. “Single-Cell RNA-Seq Reveals Lineage and X Chromosome 
Dynamics in Human Preimplantation Embryos.” Cell 165 (4): 1012–26. 
https://doi.org/10.1016/j.cell.2016.03.023. 

Phair, Robert D., Paola Scaffidi, Cem Elbi, Jaromíra Vecerová, Anup Dey, Keiko Ozato, 
David T. Brown, Gordon Hager, Michael Bustin, and Tom Misteli. 2004. “Global 
Nature of Dynamic Protein-Chromatin Interactions In Vivo: Three-Dimensional 
Genome Scanning and Dynamic Interaction Networks of Chromatin Proteins.” 
Molecular and Cellular Biology 24 (14): 6393–6402. 
https://doi.org/10.1128/MCB.24.14.6393-6402.2004. 

Picelli, S. 2013. “Smart-Seq2 for Sensitive Full-Length Transcriptome Profiling in Single 
Cells.” Nat. Methods 10. https://doi.org/10.1038/nmeth.2639. 

Ptashne, Mark. 2011. “Principles of a Switch.” Nature Chemical Biology 7 (8): 484–87. 
https://doi.org/10.1038/nchembio.611. 

Raj, Arjun, Charles S Peskin, Daniel Tranchina, Diana Y Vargas, and Sanjay Tyagi. 2006. 
“Stochastic MRNA Synthesis in Mammalian Cells.” PLoS Biology 4 (10): e309. 
https://doi.org/10.1371/journal.pbio.0040309. 

Raj, Arjun, Scott A. Rifkin, Erik Andersen, and Alexander van Oudenaarden. 2010. 
“Variability in Gene Expression Underlies Incomplete Penetrance.” Nature 463 
(7283): 913–18. https://doi.org/10.1038/nature08781. 

Ramsköld, Daniel, Shujun Luo, Yu-Chieh Wang, Robin Li, Qiaolin Deng, Omid R. Faridani, 
Gregory A. Daniels, et al. 2012. “Full-Length MRNA-Seq from Single-Cell Levels of 
RNA and Individual Circulating Tumor Cells.” Nature Biotechnology 30 (8): 777–
82. https://doi.org/10.1038/nbt.2282. 

Reinius, Björn, Jeff E Mold, Daniel Ramsköld, Qiaolin Deng, Per Johnsson, Jakob 
Michaëlsson, Jonas Frisén, and Rickard Sandberg. 2016. “Analysis of Allelic 
Expression Patterns in Clonal Somatic Cells by Single-Cell RNA–Seq.” Nature 
Genetics 48 (11): 1430–35. https://doi.org/10.1038/ng.3678. 

Reinius, Björn, and Rickard Sandberg. 2018. “Reply to ‘High Prevalence of Clonal 
Monoallelic Expression.’” Nature Genetics 50 (9): 1199–1200. 
https://doi.org/10.1038/s41588-018-0189-6. 

Robinson, Mark D., and Gordon K. Smyth. 2007. “Moderated Statistical Tests for 
Assessing Differences in Tag Abundance.” Bioinformatics 23 (21): 2881–87. 
https://doi.org/10.1093/bioinformatics/btm453. 

Roeder, Robert G. 1996. “The Role of General Initiation Factors in Transcription by RNA 
Polymerase II.” Trends in Biochemical Sciences 21 (9): 327–35. 
https://doi.org/10.1016/S0968-0004(96)10050-5. 



 

48 

Rosenfeld, Jeffrey A, Zhibin Wang, Dustin E Schones, Keji Zhao, Rob DeSalle, and Michael 
Q Zhang. 2009. “Determination of Enriched Histone Modifications in Non-Genic 
Portions of the Human Genome.” BMC Genomics 10 (March): 143. 
https://doi.org/10.1186/1471-2164-10-143. 

Ross, Mark T., Darren V. Grafham, Alison J. Coffey, Steven Scherer, Kirsten McLay, Donna 
Muzny, Matthias Platzer, et al. 2005. “The DNA Sequence of the Human X 
Chromosome.” Nature 434 (7031): 325–37. https://doi.org/10.1038/nature03440. 

Russell, Jackie, and Joost C.B.M. Zomerdijk. 2006. “The RNA Polymerase I Transcription 
Machinery.” Edited by Stefan G.E. Roberts, Robert O.J. Weinzierl, and Robert J. 
White. Biochemical Society Symposia 73 (January): 203–16. 
https://doi.org/10.1042/bss0730203. 

Saksouk, Nehmé, Elisabeth Simboeck, and Jérôme Déjardin. 2015. “Constitutive 
Heterochromatin Formation and Transcription in Mammals.” Epigenetics & 
Chromatin 8 (1): 3. https://doi.org/10.1186/1756-8935-8-3. 

Sanchez, A., and I. Golding. 2013. “Genetic Determinants and Cellular Constraints in Noisy 
Gene Expression.” Science 342 (6163): 1188–93. 
https://doi.org/10.1126/science.1242975. 

Sandelin, Albin, Piero Carninci, Boris Lenhard, Jasmina Ponjavic, Yoshihide Hayashizaki, 
and David A. Hume. 2007. “Mammalian RNA Polymerase II Core Promoters: 
Insights from Genome-Wide Studies.” Nature Reviews Genetics 8 (6): 424–36. 
https://doi.org/10.1038/nrg2026. 

Sartorelli, Vittorio, and Shannon M. Lauberth. 2020. “Enhancer RNAs Are an Important 
Regulatory Layer of the Epigenome.” Nature Structural & Molecular Biology 27 (6): 
521. https://doi.org/10.1038/s41594-020-0446-0. 

Schmidt, Wolfgang M., and Manfred W. Mueller. 1999. “CapSelect: A Highly Sensitive 
Method for 5′ CAP-Dependent Enrichment of Full-Length CDNA in PCR-
Mediated Analysis of MRNAs.” Nucleic Acids Research 27 (21): e31-i. 
https://doi.org/10.1093/nar/27.21.e31-i. 

Schwalb, Björn, Margaux Michel, Benedikt Zacher, Katja Frühauf, Carina Demel, Achim 
Tresch, Julien Gagneur, and Patrick Cramer. 2016. “TT-Seq Maps the Human 
Transient Transcriptome.” Science 352 (6290): 1225–28. 
https://doi.org/10.1126/science.aad9841. 

Schwenk, Hans-Ulrich, and Ulrich Schneider. 1975. “Cell Cycle Dependency of a T-Cell 
Marker on Lymphoblasts.” Blut: Zeitschrift Für Die Gesamte Blutforschung 31 (5): 
299–306. https://doi.org/10.1007/BF01634146. 

Senecal, Adrien, Brian Munsky, Florence Proux, Nathalie Ly, Floriane E. Braye, Christophe 
Zimmer, Florian Mueller, and Xavier Darzacq. 2014. “Transcription Factors 
Modulate C-Fos Transcriptional Bursts.” Cell Reports 8 (1): 75–83. 
https://doi.org/10.1016/j.celrep.2014.05.053. 

Shahrezaei, V., and P. S. Swain. 2008. “Analytical Distributions for Stochastic Gene 
Expression.” Proceedings of the National Academy of Sciences 105 (45): 17256–
61. https://doi.org/10.1073/pnas.0803850105. 

Shatkin, A. J. 1976. “Capping of Eucaryotic MRNAs.” Cell 9 (4): 645–53. 
https://doi.org/10.1016/0092-8674(76)90128-8. 



 

 49 

Spudich, John L., and D. E. Koshland. 1976. “Non-Genetic Individuality: Chance in the 
Single Cell.” Nature 262 (5568): 467–71. https://doi.org/10.1038/262467a0. 

Stavreva, Diana A., David A. Garcia, Gregory Fettweis, Prabhakar R. Gudla, George F. Zaki, 
Vikas Soni, Andrew McGowan, et al. 2019. “Transcriptional Bursting and Co-
Bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor 
Mobility.” Molecular Cell 75 (6): 1161-1177.e11. 
https://doi.org/10.1016/j.molcel.2019.06.042. 

Stinchcombe, Adam R., Charles S. Peskin, and Daniel Tranchina. 2012. “Population Density 
Approach for Discrete MRNA Distributions in Generalized Switching Models for 
Stochastic Gene Expression.” Physical Review E 85 (6): 061919. 
https://doi.org/10.1103/PhysRevE.85.061919. 

Svensson, Valentine, Eduardo da Veiga Beltrame, and Lior Pachter. 2020. “A Curated 
Database Reveals Trends in Single-Cell Transcriptomics.” Database 2020 
(January): baaa073. https://doi.org/10.1093/database/baaa073. 

Svensson, Valentine, Roser Vento-Tormo, and Sarah A. Teichmann. 2018. “Exponential 
Scaling of Single-Cell RNA-Seq in the Past Decade.” Nature Protocols 13 (4): 599–
604. https://doi.org/10.1038/nprot.2017.149. 

Tang, Fuchou, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, Nanlan 
Xu, Xiaohui Wang, et al. 2009. “MRNA-Seq Whole-Transcriptome Analysis of a 
Single Cell.” Nature Methods 6 (5): 377–82. https://doi.org/10.1038/nmeth.1315. 

Tantale, Katjana, Florian Mueller, Alja Kozulic-Pirher, Annick Lesne, Jean-Marc Victor, 
Marie-Cécile Robert, Serena Capozi, et al. 2016. “A Single-Molecule View of 
Transcription Reveals Convoys of RNA Polymerases and Multi-Scale Bursting.” 
Nature Communications 7 (1). https://doi.org/10.1038/ncomms12248. 

The FANTOM Consortium, Robin Andersson, Claudia Gebhard, Irene Miguel-Escalada, Ilka 
Hoof, Jette Bornholdt, Mette Boyd, et al. 2014. “An Atlas of Active Enhancers 
across Human Cell Types and Tissues.” Nature 507 (7493): 455–61. 
https://doi.org/10.1038/nature12787. 

Tunnacliffe, Edward, Adam M. Corrigan, and Jonathan R. Chubb. 2018. “Promoter-
Mediated Diversification of Transcriptional Bursting Dynamics Following Gene 
Duplication.” Proceedings of the National Academy of Sciences 115 (33): 8364–
69. https://doi.org/10.1073/pnas.1800943115. 

Vettermann, Christian, and Mark S. Schlissel. 2010. “Allelic Exclusion of Immunoglobulin 
Genes: Models and Mechanisms.” Immunological Reviews 237 (1): 22–42. 
https://doi.org/10.1111/j.1600-065X.2010.00935.x. 

Vierstra, Jeff, John Lazar, Richard Sandstrom, Jessica Halow, Kristen Lee, Daniel Bates, 
Morgan Diegel, et al. 2020. “Global Reference Mapping of Human Transcription 
Factor Footprints.” Nature 583 (7818): 729–36. https://doi.org/10.1038/s41586-
020-2528-x. 

Vigneau, Sébastien, Svetlana Vinogradova, Virginia Savova, and Alexander Gimelbrant. 
2018. “High Prevalence of Clonal Monoallelic Expression.” Nature Genetics 50 (9): 
1198–99. https://doi.org/10.1038/s41588-018-0188-7. 

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David 
Cournapeau, Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for 



 

50 

Scientific Computing in Python.” Nature Methods 17 (3): 261–72. 
https://doi.org/10.1038/s41592-019-0686-2. 

Visa, N., E. Izaurralde, J. Ferreira, B. Daneholt, and I. W. Mattaj. 1996. “A Nuclear Cap-
Binding Complex Binds Balbiani Ring Pre-MRNA Cotranscriptionally and 
Accompanies the Ribonucleoprotein Particle during Nuclear Export.” The Journal 
of Cell Biology 133 (1): 5–14. https://doi.org/10.1083/jcb.133.1.5. 

Vo ngoc, Long, California Jack Cassidy, Cassidy Yunjing Huang, Sascha H.C. Duttke, and 
James T. Kadonaga. 2017. “The Human Initiator Is a Distinct and Abundant 
Element That Is Precisely Positioned in Focused Core Promoters.” Genes & 
Development 31 (1): 6–11. https://doi.org/10.1101/gad.293837.116. 

Vo ngoc, Long, Cassidy Yunjing Huang, California Jack Cassidy, Claudia Medrano, and 
James T. Kadonaga. 2020. “Identification of the Human DPR Core Promoter 
Element Using Machine Learning.” Nature 585 (7825): 459–63. 
https://doi.org/10.1038/s41586-020-2689-7. 

Volpe, Thomas A., Catherine Kidner, Ira M. Hall, Grace Teng, Shiv I. S. Grewal, and Robert A. 
Martienssen. 2002. “Regulation of Heterochromatic Silencing and Histone H3 
Lysine-9 Methylation by RNAi.” Science 297 (5588): 1833–37. 
https://doi.org/10.1126/science.1074973. 

Vu, Trung Nghia, Quin F. Wills, Krishna R. Kalari, Nifang Niu, Liewei Wang, Mattias 
Rantalainen, and Yudi Pawitan. 2016. “Beta-Poisson Model for Single-Cell RNA-
Seq Data Analyses.” Bioinformatics 32 (14): 2128–35. 
https://doi.org/10.1093/bioinformatics/btw202. 

Wallis, M. C., P. D. Waters, and J. A. M. Graves. 2008. “Sex Determination in Mammals—
before and after the Evolution of SRY.” Cell. Mol. Life Sci. 65. 
https://doi.org/10.1007/s00018-008-8109-z. 

Walters, M. C., S. Fiering, J. Eidemiller, W. Magis, M. Groudine, and D. I. Martin. 1995. 
“Enhancers Increase the Probability but Not the Level of Gene Expression.” 
Proceedings of the National Academy of Sciences 92 (15): 7125–29. 
https://doi.org/10.1073/pnas.92.15.7125. 

Wasserman, Wyeth W, and James W Fickett. 1998. “Identification of Regulatory Regions 
Which Confer Muscle-Specific Gene Expression11Edited by G. Von Heijne.” 
Journal of Molecular Biology 278 (1): 167–81. 
https://doi.org/10.1006/jmbi.1998.1700. 

Willy, P. J., R. Kobayashi, and J. T. Kadonaga. 2000. “A Basal Transcription Factor That 
Activates or Represses Transcription.” Science (New York, N.Y.) 290 (5493): 982–
85. https://doi.org/10.1126/science.290.5493.982. 

Wunderlich, Zeba, and Leonid A. Mirny. 2009. “Different Gene Regulation Strategies 
Revealed by Analysis of Binding Motifs.” Trends in Genetics 25 (10): 434–40. 
https://doi.org/10.1016/j.tig.2009.08.003. 

Xiong, Y. 2010. “RNA Sequencing Shows No Dosage Compensation of the Active X-
Chromosome.” Nat. Genet. 42. https://doi.org/10.1038/ng.711. 

Zhang, Martin Jinye, Vasilis Ntranos, and David Tse. 2020. “Determining Sequencing 
Depth in a Single-Cell RNA-Seq Experiment.” Nature Communications 11 (1): 774. 
https://doi.org/10.1038/s41467-020-14482-y. 



 

 51 

Zwemer, Lillian M, Alexander Zak, Benjamin R Thompson, Andrew Kirby, Mark J Daly, 
Andrew Chess, and Alexander A Gimelbrant. 2012. “Autosomal Monoallelic 
Expression in the Mouse.” Genome Biology 13 (2): R10. https://doi.org/10.1186/gb-
2012-13-2-r10. 

 




