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 Abstract 

Protein tyrosine kinases are enzymes that catalyse the transfer of phosphate groups from ATP to 

tyrosine residues on other proteins as substrate. Phosphorylation at tyrosine residues regulates 

several functions, including enzyme activity, cellular localization, signal transduction, and 

interactions between proteins. Non-receptor tyrosine kinases (nRTKs) are one of the main players 

in intracellular signaling pathways.  Dysregulation of nRTKs leads to their constitutive 

activation, which might contribute to initiation or progression of cancer. Therefore, targeting 

dysregulated nRTKs may prevent the process of tumorigenesis. Targeted-based cancer therapy 

(TBCT) methods and agents or personalized medicine have emerged as the main tools for cancer 

treatment. Currently, several TBCT agents, including monoclonal antibodies (mAbs) and small 

molecules inhibitors of tyrosine kinases (TKIs) have been developed. TKIs of cytoplasmic 

kinases inhibit intracellular signaling pathways and interfere with tumor cell functions. In this 

article, the recent progresses in development of TKIs of nRTKs approved by the US Food and 

Drug Administration (FDA) and current promising TKIs in preclinical and clinical settings have 

been reviewed.    

  

http://en.wikipedia.org/wiki/Signal_transduction
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Introduction 

Recent outstanding progresses in tumor biology have improved and changed the traditional 

concept of cancer treatment. It is known that most tumors express dysregulated and specific 

molecules. These molecules may be classified as tumor specific  antigens (TSA) and tumor 

associated antigens (TAA). A few TSAs have been shown to be pan-tumor markers [1]. ROR1 

receptor tyrosine kinase-like orphan receptor 1 is an example of a pan-tumor associated marker, 

which is expressed by several tumors [2-8]. These dysregulated molecules are the major players 

that are required for tumorigenesis process [2, 4-5].  

Protein kinases (PKs) are one of the most investigated classes of tumor targets for different 

approaches of targeted based-cancer therapy (TBCT). Phosphorylation of protein substrates by 

PKs results in several functional changes of the target protein by altering the activity of the target 

molecule. These changes modify the cellular location and association of target proteins with other 

proteins as well as activation or inactivation of signaling pathways. Currently, 500 kinases (2% of 

genome) that modify up to 30% of cellular proteins have been known to control the majority of 

intracellular pathways, especially those which are involved in the process of signal transduction 

[9].  

Protein tyrosine kinases (PTKs) are a major subtype of PKs that catalyse and phosphorylate 

tyrosine (Tyr) residues and are mainly involved in signal transduction. They usually behave as 

growth-factor receptors (receptor tyrosine kinases (RTKs)) or downstream signaling molecules 

[10]. PTKs that are downstream of RTKs are called non-receptor TKs (nRTKs) and constitute 

different proteins involve in different signaling pathways. The vast majority of these proteins are 

complicated in several diseases, including cancer and inhibition of these abnormal kinases has 

gained the attention of several researchers for cancer treatment using TBCT agents [11].  

TBCT has seen a rapid development of numerous specific agents and new methods. This field 

has shown the development of promising drugs that selectively targets tumor antigens that are 

necessary for cancer cell survival [12]. Currently, monoclonal antibodies (mAbs) and small 

molecule inhibitors of tyrosine kinases (TKIs) are the most specific agents of TBCT [10, 12-13].  

Among several molecules, targeting nRTKs has shown rapid and impressive therapeutic 

applications. Currently, most TKIs are multi-targeted inhibitors that suppress several proteins. 

http://en.wikipedia.org/wiki/Signal_transduction
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Due to the lack of cumulative data on selective TKIs of nRTKs, in this article, recent advances in 

targeting nRTKs using the most selective/specific TKIs have been reviewed. 

 

Tyrosine kinase inhibitors (TKIs) 

TKIs have been recently classified into five classes. Type 1 TKIs are the most common type of 

inhibitors, which are adenosine 3-phosphate (ATP)-competitors. These inhibitors detect the 

active structure of the substrate and mimic ATP  [14].  

Functional forms of a kinase might be described by the place of a conserved Asp–Phe–Gly 

(DFG) amino acid sequence (conserved activation loop in several kinases) in the activation site. 

Type I usually targets the ATP binding site in the active DFG-in conformation. Type II inhibitors 

induce a different DFG-out (inactive form) conformation and occupy an additional hydrophobic 

pocket created by this sequence rearrangement. These inhibitors have several advantages 

compared to type I, including a better selectivity and slower off-rate for targeted kinase (due to 

the stabilization of inactive kinase conformation, the off rates are significantly lower than their 

type I counterparts) [15-16]. ABL proto-oncogene inhibitors such as imatinib (Gleevec or Glivec) 

and nilotinib (Tasigna), as well as KIT and RAF inhibitor sorafenib (Nexavar), are among this 

type.  

Type III or allosteric inhibitors bind to the allosteric site of the substrate proximal to the ATP 

binding pocket and have shown to be highly selective and specific for kinases. IκB kinase (IKK) 

inhibitor (BMS-345541) and the mitogen-activated protein kinase (also known as MAP2K, MEK, 

MAPK) inhibitor (CI-1040) are among this group [14].  

Type IV inhibitors (pure allosteric enzyme inhibitors) form an irreversible bond to the active site 

of the substrate through binding to a cysteine (Cys) residue. Epidermal growth factor receptor 

(EGFR) inhibitor HKI-272 and Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib belong to this 

group [16].  

Type V inhibitors are classified as a new type, and a few TKIs hve been classified in this group. 

These inhibitors are bivalent compounds that target two distinct regions of the kinase. This 

bivalent binding will significantly increase affinities and enhances the selectivity of TKI for the 

targeted kinase. These new type of inhibitors might be the most useful drugs for personalized 

medicine and investigating signal transduction (Fig 1).  
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Currently, several selective/specific nRTK-TKIs have been developed and most of them are in 

preclinical investigations. Due to the large number of these TKIs, in the next sections, the most 

important and selective nRTK-TKIs have been briefly described.  

 

Intracytoplasmic tyrosine kinases and TKIs 

Proto-oncogene tyrosine-protein kinase SRC family  

SRC family kinases belong to nRTKs and contain nine protein members divided into three 

subfamilies, including SRC, gardner-rasheed feline sarcoma oncogene (FGR), YES, and FYN 

(subfamily A) as well as B lymphocyte kinase (BLK), HCK, LCK, and LYN (subfamily B) and 

FYN-related kinase (FRK) subfamily [17].  

SRC kinases are controlled by several types of receptors, including RTKs, cytokine receptors, G-

protein coupled receptors, steroid hormone receptors, and integrin receptors and are involved in 

cell migration and motility, cell proliferation, survival, and gene expression regulation through 

communication with integrins, E-cadherin and focal adhesion kinase (FAK) [18].   

SRC interacts with several RTKs such as EGFR, human epidermal receptor (HER) 2, MET, and 

platelet-derived growth factor (PDGF) that are overexpressed or mutated in several tumors [19].  

SRC members have highly similar structure; therefore it is difficult to selectively target SRC 

members by TKIs. However, it has been demonstrated that the orientation and linker between the 

SRC homology (SH) domains of some SRC members are different from each other [20].  Based 

on these differences several selective TKIs have been produced, but none of them have entered 

preclinical and clinical trials [21].  

Currently, several multi-targeted TKIs, including bosutinib (bosulif/SKI-606), dasatinib (Sprycel, 

BMS-354825), saracatinib (AZD0530), and imatinib have been shown to target SRC kinases and 

are approved by the US Food and Drug Administration (FDA) for the treatment of different 

malignancies (Table 1).  
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Bosutinib 

Bosutinib is a dual SRC- and B-cell receptor (BCR)/ABL-TKI with IC50 values of 1.2 and 1 nM, 

respectively in cell-free assays. It received the FDA approval on September 4, 2012, for the 

treatment of Philadelphia chromosome positive (Ph
+
) chronic myeloid leukemia (CML) patients 

with resistance or intolerance to prior therapy [22].  

The combination effects of bosutinib versus imatinib were evaluated in BELA trial in newly 

diagnosed chronic myeloid leukemia patients. The trial did not meet the primary endpoint results. 

Moreover, the drugs showed partial and distinct safety profile. Liver and gastrointestinal 

complications were frequent in bosutinib treated patients, whereas musculoskeletal disorders, 

neutropenia, and edema were observed in imatinib treated group [22]. 

Bosutinib is currently in clinical trials for the treatment of breast and pancreatic cancers, acute 

lymphocytic leukemia (ALL) and glioblastoma [18]. Moreover, the effects in combination with 

other inhibitors and cytotoxic agents are testing in several clinical trials (www.clinicaltrials.gov). 

 

Dasatinib 

Among several multi-targeted TKIs, dasatinib is an appropriate TKI that target most SRC family 

members, including HCK, FGR, FRK, SRC, LYN, LCK, FYN, YES, and BLK. Moreover, this 

TKI targets discoidin domain receptor 1 (DDR1), ABL, c-KIT, c-FMS, platelet-derived growth 

factor receptors (PDGFR) α and β, and ephrin receptors [23]. Dasatinib has been shown to block 

several cellular functions such as cell duplication and proliferation through G0-G1 arrest, 

migration, invasion, and induced tumor cells apoptosis [23]. This SMI was approved on June 28, 

2006, for the treatment of Ph
+
 CML and ALL. On October 28, 2010, the FDA granted accelerated 

approval to dasatinib for the treatment of newly diagnosed adult patients with Ph
+
 CML in 

chronic phase (CP-CML). This drug is testing in several clinical trials for the treatment of 

patients with solid tumors and ALL [18]. Hematopoietic toxicity, diarrhea, hypertension, and 

fatigue have been described the major side effects of dasatinib [24]. 

 

http://www.clinicaltrials.gov/
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Saracatinib 

Saracatinib is more selective for SRC members than other non-specific SRC inhibitors and 

targets BLK, LYN, YES, FYN, LCK and, FGR. It also inhibits ABL and EGFR (with L858R and 

L861Q mutations) kinases and is testing in several clinical trials for the treatment of ovarian, 

colorectal, gastric and small cell lung cancers, non-small cell lung carcinoma (NSCLC), and 

osteosarcoma (www.clinicaltrials.gov).  

Preclinical studies have shown promising effects of this TKI. Saracatinib has shown good 

pharmacokinetic, aqueous solubility and moderate binding to plasma proteins in animal models. 

It blocked the growth of tumor cells in a 3T3-fibroblast xenografted model transfected with c-

SRC in vivo and increased the survival of animal transplanted with human pancreatic cancer [25].  

Saracatinib reduced CML and Ph
+
 ALL cell lines growth but has no effects on the Ph

-
 ALL cells. 

It inhibited imatinib-resistant Ba/F3 cells growth, which express the mutations E255K and Y253F 

[26] and in xenografted mice, it reduced tumor cell growth [26]. 

Combination of saracatinib and anti-estrogen drug tamoxifen reduced SRC phosphorylation, 

activity and blocked expression of c-MYC and cyclin D1 in MCF7 and T47D breast cancer cell 

lines. The combination treatment inhibited tumor cell proliferation, abrogated invasive behavior 

of cells in vitro and prevented the emergence of tumor cell resistance to tamoxifen alone therapy 

[27].  

 

Saracatinib has been shown to be effective in lung cancer cell lines and decreased migration and 

invasion of cells, inhibited AKT activation and sensitized tumor cells to irradiation [28] as well 

as inhibition of pancreatic tumors growth in mice xenografts [29]. 

 

This TKI is testing in clinical trials for the treatment of solid tumors, including prostate, head and 

neck, pancreatic, breast, colorectal, NSCLC cancers, and osteosarcoma, as single agent therapy or 

in combination with other drugs.  

A phase II trial of saracatinib has been done in patients with advanced castration resistant prostate 

cancer [30]. The primary endpoint was 30% or greater decrease of prostate-specific antigen 

(PSA). Twenty eight patients were treated with 175 mg orally once daily continuously. Five 

http://www.clinicaltrials.gov/
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patients showed transient PSA reduction. Saracatinib showed to be well-tolerated and the median 

progression-free survival (PFS) time was determined to be 8 weeks [30]. 

 

JAK/STATs pathway  

Janus kinase (JAK)/ signal transducers and activators of transcription (STAT) signaling pathway 

is one of the most important pathways, involved in the immune system for direct communication 

from transmembrane signals to the nucleus [31]. This pathway is activated by cytokines. Upon 

stimulation by ligand, cytokine receptor-associated JAK molecules phosphorylate the 

intracellular tail of their receptors and create docking sites for STAT transcription factors. STATs 

phosphorylation by JAKs activates STATs and induces their transfer to the nucleus to regulate 

gene expression [32-33].  

JAK family consists of four members, including JAK1, JAK2, JAK3, and TYK2 that bind to 

different receptors with distinct roles and thereby discrete functional outcomes are sought. 

Moreover, STAT family has seven members (STAT1, STAT2, STAT3, STAT4, STAT5a, 

STAT5b, and STAT6). 

Constitutive phosphorylation and activation of JAKs and STATs was first reported as being 

associated with malignancy in the 1990s [34]. The JAK/STAT pathway is activated by several 

mechanisms such as activating mutations of receptors and autocrine or paracrine cytokine 

secretion which then activates STATs. Hyperactivation of STAT members has been 

demonstrated in several tumors. Of several members of STATs, constitutive activation of STAT3 

has been shown in several types of solid tumors and hematologic malignancies [32-33, 35-38]. 

Among STAT members, STAT3 is vital for several RTK signaling pathways, including ROR1 

[1, 4-5, 39-40] and EGFR [41] and is constitutively phosphorylated in several solid tumors and is 

involved in cell proliferation and immune tolerance as well as tumor angiogenesis. Inhibition of 

this molecule induces apoptosis of tumor cells in STAT3-activated cells [42].  
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OPB-51602 

OPB-51602 is a SMI of STAT3 with proper preclinical results. OPB-51602 prevents the 

phosphorylation and activation of STAT3 molecule, impeding it from moving from the cell 

cytoplasm to the cell nucleus and therefore inhibiting the regulation of gene expression by 

STAT3 via binding to the respective gene promoters. This TKI blocks the phosphorylation of 

STAT3 at Tyr and serine (Ser) residues 705 and 727, respectively. These residues are essential 

for full activation of STAT3.  

OPB-51602 has been evaluated in a phase I trial for the treatment of refractory solid 

malignancies, including NSCLC [42]. In this study, the maximum tolerated dose showed to be 5 

mg per day dosing. Data demonstrated the dephosphorylation of STAT3 (Tyr 705) following 

OPB-51602 exposure. Of fifty-one patients, two patients showed partial response. First cycle 

dose-limiting toxicities were observed in two patients (grade 3 hyponatremia and dehydration) 

and common side effects were diarrhea, fatigue, vomiting, anorexia and early-onset peripheral 

neuropathy [42].  

 

OPB-31121 

 OPB-31121 is another STATs inhibitor, which its effects have been investigated in gastric 

cancer and xenograft models [43]. OPB-31121 reduces JAK2 expression and phosphorylation 

leading to inhibition of STAT3 activation. Moreover, it induces the apoptosis of tumor cells, 

reduces the expression of anti-apoptotic proteins, preventes interleukin-6 (IL-6)-induced 

JAK/STAT signaling pathway, reduces tumor cell proliferation in vitro and in a xenograft model, 

and exhibits synergism with 5-fluorouracil and cisplatin drugs [43].  

Furthermore, OPB-31121 inhibited the phosphorylation of both STAT3 and STAT5 and 

prevented tumor cell growth in multiple myeloma, Burkitt lymphoma and leukemias with 

expression of fms-like tyrosine kinase (FLT3)/ internal tandem duplication (ITD), JAK2-V617F 

and BCR/ABL oncoproteins. It also showed anti-tumor effects against primary human leukemia 

cells in an immunodeficient mouse transplant model [44]. 

In the first clinical trial, OPB-31121 was investigated for the maximum tolerated dose and 

biologic activity, safety and pharmacokinetics in thirty patients with advanced tumors [45]. In 



10 
 

this study, patients received twice daily of the OPB-31121 at six doses (50-350 mg). Grade 3 

lactic acidosis as well as grade 3 vomiting and diarrhea were observed at 300 and 350 mg, 

respectively. Grade 1 and 2 side effects were nausea, vomiting, diarrhea, and fatigue. 

Pharmacokinetics showed high variability between different patients. However, no objective 

responses were observed after two cycles of treatment [45]. 

 

Ruxolitinib 

Ruxolitinib (INCB018424 or INC424) is a selective inhibitor of JAK1 and JAK2  [46]. It was 

approved by the FDA on November 16, 2011, for the treatment of myelofibrosis, polycythemia 

vera and thrombocythemia as well as December 4, 2014 for the treatment of patients with 

polycythemia vera who have had an inadequate response to or are intolerant of hydroxyurea 

(www.fda.gov) [46]. 

Preclinical studies have shown that it dephosphorylated JAK1 and JAK2 and inhibited IL-6 

signaling with an IC50 value of 281 nM in cell-free assays [47]. Cell lines carrying JAK2 V617F 

mutation exhibited growth inhibition and apoptosis when treated with ruxolitinib. In a mouse 

model of JAK2 V617F myeloproliferative neoplasm, ruxolitinib induced apoptosis of neoplastic 

cells and decreased splenomegaly and inflammatory cytokines and resulted in prolonged mice 

survival [47].  

Ruxolitinib has been investigated in several preclinical and clinical trials for the treatment of 

myelofibrosis patients [48-50]. In the COMFORT-II clinical trial ruxolitinib treatment showed 

42% reduction in risk of death. After 3.5 years follow-up, the probability of survival was shown 

to be 71% in the ruxolitinib arm [51].  

 

Tofacitinib 

Tofacitinib (Xeljanz or Jakvinus) is a TKI of the JAK1/JAK3 that was approved by the FDA for 

the treatment of rheumatoid arthritis (RA). It is investigating for the treatment of psoriasis and 

inflammatory bowel disease. The cytotoxic effects of this TKI have been extensively studied in 

autoimmune disorders [52-54]. This TKI selectively inhibits proliferating cells. It interferes with 

http://www.fda.gov/
http://en.wikipedia.org/wiki/Rheumatoid_arthritis
http://en.wikipedia.org/wiki/Psoriasis
http://en.wikipedia.org/wiki/Inflammatory_bowel_disease
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T cell blast stimulation through blocking IL-2/STAT5 and inhibits the expression of 

inflammatory cytokines through IL-6/STAT3 and STAT1 [55]. 

The therapeutic effects of tofacitinib have been studied in a few cancers such as B-cell lymphoma 

[56] and breast cancer [57]. It has been demonstrated that oncostatin M (OSM) induced 

phosphorylation of STAT3 at Tyr 705 and Ser 727 residues in breast cancer cells as well as 

overexpression of STAT3-dependent genes, including S100 family members S100A7, S100A8 

and S100A9. Activation of STAT3 in MCF-7 breast cancer by OSM induced cellular scattering 

and tumor vascularization of orthotopic xenografts. Selective inhibition of OSM by tofacitinib 

inhibited STAT3 signaling and tumor angiogenesis [57].  

Xenografted mice, which have been transplanted with bone marrow progenitor cells expressing 

JAK3 mutants, developed T-ALL-like leukemia and are characterized by growth of immature 

CD8
+
 T cells. Treatment of these mice with tofacitinib decreased the number of lymphocytes and 

induced apoptosis of leukemic cells [58]. 

Tofacitinib has shown inhibitory effects on nasal-type natural killer (NK)/T-cell lymphoma 

(NKCL) cells in xenograft mice. NKCL is an aggressive cancer with poor prognosis in which 

JAK3/STAT3 pathway is constitutively active [59]. Data show that tofacitinib has anti-tumor 

activity and might be a proper TKI for the treatment of more progressive tumors. Further 

investigations are necessary to evaluate the potential anti-tumor effects of tofacitinib in cancer. 

The effects of several other JAKs-TKIs, including oclacitinib [60], baricitinib [61], momelotinib 

(CYT387), pacritinib [62], LY2784544 [63], and lestaurtinib [64] are testing in autoimmune and 

allergic disorders and cancer (multiple myeloma) (Table 1). 

 

BCR/ABL kinase 

BCR/ABL is an oncokinase involved in cancer development. BCR/ABL is encoded by the Ph 

chromosome that forms due to the translocation between chromosomes 9 and 22 (t(9;22) 

(q34;q11) reciprocal translocation) [65]. Therefore, this translocation produces a chimeric 

BCR/ABL oncoprotein that is constitutively active and enhances the growth of leukemic cells.  

This kinase is active in more than 90% of CML patients. The ABL protein normally shuttles 

between the cytoplasm and nucleus and following fusion with BCR, it loses this property and 
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retains in the cytoplasm and reacts with other intracellular proteins complicated in the process of 

tumorigenesis [66].  

BCR/ABL is subjected to several point mutations that affect the structure of this kinase, leading 

either to disruption of major contact points between the TKIs and the BCR/ABL or change the 

kinase conformation, resulting in a kinase that is resistant to TKIs. These mutations increase 

during disease progression from chronic disease to the blast phase. T315I is the most frequent 

mutation that happens at the P-loop [67]. 

Due to the homology between SRC and ABL kinases in the catalytic domains (47%), TKIs that 

were produced as SRC inhibitors have shown to inhibit ABL. Currently, several non-specific 

BCR/ABL-TKIs, including imatinib, dasatinib, nilotinib, ponatinib (Iclusig, Ariad), and bosutinib 

have been approved by the FDA for cancer treatment, mostly in Ph
+
 ALL and acute myeloid 

leukemia (AML) patients (Table 1).  

 

Ponatinib 

Ponatinib (AP24534) is a selective BCR/ABL-TKI, which is used for the treatment of AML 

patients with BCR/ABL-mutation; however it targets other kinases. This TKI was discovered by 

O'Hare T et al. at 2009. It has IC50 values of 0.37 nM for native BCR/ABL and 2.0 nM for the 

T315I mutant form (in cell-free assays) [68].  

The activity of ponatinib, imatinib, nilotinib and dasatinib has been tested in biochemical assays. 

All inhibitors reduce the catalytic activity of native ABL; however, only ponatinib is the potent 

inhibitor of the ABL-T315I mutant form. Ponatinib has displayed similar inhibitory effects on 

other imatinib-resistant ABL mutants, including ABL-Y253F, ABL-E255K, and ABL-G250E 

[68]. 

Ponatinib prevented the kinase activity of native ABL and the T315I mutants and suppressed 

proliferation of Ba/F3-derived cell lines. Moreover, treatment of xenografted mice with 

BCR/ABL mutant (T315I) expressing Ba/F3 cells, prolonged the survival of transplanted mice 

[69]. Based on the positive effects on patients with ALL and CML with BCR/ABL-T315I 

mutation, it was approved on December 14, 2012 for the treatment of ALL and CML with this 

mutation [18].  

http://en.wikipedia.org/wiki/Chronic_phase_chronic_myelogenous_leukemia
http://en.wikipedia.org/wiki/Blastic_phase_chronic_myelogenous_leukemia
http://en.wikipedia.org/wiki/P-loop
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The effects of ponatinib have been tested against other ABL inhibitor-resistant leukemia cells. 

Treatment with ponatinib has been shown to reduce BCR/ABL and LYN phosphorylation and 

prevented the proliferation and growth of imatinib or nilotinib resistant K562 cells [70].  

 

GNF-5 

GNF-5 is a selective/specific and allosteric BCR/ABL-TKI with IC50 value of 220 nM in cell-free 

assays. This TKI possesses proper selectivity towards BCR/ABL mutants found in CML patients 

and binds to the myristate pocket of ABL [71]. 

It has been noted that combination of GNF-5 with imatinib or nilotinib (the ATP-competitive 

inhibitors), suppressed the development of resistance mutations and this combination is more 

effective in suppressing tumor cells with ABL-T315I mutation in vitro and in mice models. The 

results demonstrated that inhibition of BCR/ABL using inhibitors that react with myristate 

residue and in combination with BCR/ABL type I inhibitors may overcome tumor cells resistance 

compared to either inhibitor alone [72]. 

 

Focal adhesion kinase (FAK)  

FAK (PTK2) regulates several intracellular activities involved in cell motility, reorganization of 

actin, cell migration, adhesion, spreading and cell polarization, bone remodeling, and 

transcriptional events promoting epithelial-to-mesenchymal transition (EMT) [73-75]. This 

nRTK is necessary for retention of marginal-zone B cells in the spleen, migration of B cells 

located in the spleen and macrophage polarization and migration towards sites of inflammation. 

FAK is localized to the sites of integrin adhesion and modulates growth-factor signaling, 

proliferation, survival, and cell migration.  

Several studies have noted that FAK overexpression is associated with cancer poor prognosis and 

drug resistance [73, 76]. This nRTK is dysregulated and overexpressed in several cancers such as 

ovarian [76], skin and breast cancers [77]. Therefore, it might be a proper target for TBCT (Fig 

1). 
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Several TKIs have been developed to target FAK, including defactinib, GSK2256098, TAE226, 

PF-573,228, PF-562,271, VS‑6062, and VS‑4718 (PND‑1186). These TKIs prevented FAK Tyr 

397 autophosphorylation and inhibited cell movement as described in cell lines and animal 

models, but they induced low apoptosis in tumor cells [78].  

 

Defactinib 

Defactinib (VS-6063) is a selective FAK inhibitor and has been shown to be a potent cancer stem 

cell inhibitor [79]. Defactinib induces FAK dephosphorylation at the Tyr 397 in a time- and dose-

dependent manner. The combination of defactinib with other cytotoxic agents such as paclitaxel 

inhibited proliferation and increased apoptosis of tumor cells. Defactinib reduced AKT levels in 

taxane-resistant cell lines. Moreover, inhibition of FAK improved chemosensitivity in taxane-

resistant cells. [79]. 

Currently, defactinib is evaluating in a few phase I and II clinical trials for the treatment of 

patients with malignant pleural mesothelioma, advanced ovarian cancer and KRAS mutant 

NSCLC (ClinicalTrials.gov).  

 

Other FAK inhibitors such as GSK2256098, VS‑4718 and VS‑6062 are in phase I and II trials 

and NVP-TAC544, PF-573,228, TAE226, 1H‑Pyrrolo (2,3‑b) pyridine, compound 1 and 2, Y15, 

C4, R2, and Y11 are in preclinical investigations [75].  

 

  

TEC protein kinase  

The TEC family is the second largest family of nRTKs consists of five members, including BTK, 

IL-2 inducible tyrosine kinase (ITK/TSK/EMT), BMX, resting lymphocyte kinase (RLK/TXK), 

and TEC, which are expressed by several normal tissues. BTK is the prototype of this family 

[80]. TEC members are important players in the regulation of the immune system and have 

important functions in T cell activation, differentiation and cell signaling [81]. 

https://clinicaltrials.gov/ct2/show/NCT01951690?term=Defactinib&rank=5
https://clinicaltrials.gov/ct2/show/NCT01951690?term=Defactinib&rank=5
http://en.wikipedia.org/wiki/TEC_(gene)
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TEC kinases are dysregulated in several malignancies, including chronic lymphocytic leukemia 

(CLL), mantle cell lymphoma (MCL), multiple myeloma, and diffuse large B-cell lymphoma 

(DLBCL) [81-83]. 

Based on the crucial role of this family, several inhibitors have been designed and produced to 

target TEC family members. Ibrutinib (PCI-32765) is the most famous TKI that targets BTK and 

has been approved by the FDA for the treatment of MCL and CLL (Fig. 1) [84-85].  

 

Ibrutinib 

Ibrutinib is the first-in-class covalent inhibitor of BTK reported by Pan et al. [86]. This TKI binds 

covalently to Cys 481 in the ATP-binding pocket of BTK (type IV TKI) (Table 1). Ibrutinib has 

IC50 values of 0.5, 0.5, 0.8, 5.6, 10.7, and 16.1 nM for BTK, BLK, BMX, EGFR, ITK and JAK3 

in cell-free assays, respectively [87-88].  

Ibrutinib has been tested in several preclinical and clinical experiments for the treatment of 

various lymphomas and leukemias. Preclinical studies have demonstrated blocking of BCR 

signaling by ibrutinib [87] leads to induction of apoptosis in primary CLL, MCL, hairy cell 

leukemia (HCL), and DLBCL cells [89-93]. The anti-tumor effects of this TKI have been 

described in several review articles [94-95] and will not be described here. 

 

BMS-509744 

BMS-509744 is a selective ATP-competitive inhibitor of ITK with an IC50 value of 19 nM  

(Table 1) [83]. The inhibitory effects of this TKI have not been well studied in malignancies; 

however, several studies have shown the inhibitory effects in inflammatory and infectious 

diseases [96-97]. Interestingly, it has been demonstrated that BMS-509744 blocked wild-type 

HIV-1 infectivity and replication [96]. The HIV-1 NEF virulence factor interacts with several 

signaling proteins, including the SH3 domain of SRC family, BMX, BTK, and ITK kinases 

resulting in the activation of essential kinases for viral infectivity and replication [96]. 
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PRN694 

PRN694 has been considered as a new inhibitor of ITK and RLK that selectively and covalently 

binds to Cys 442 and Cys 350 residues of ITK and RLK, respectively (type IV TKI) [98]. 

Cellular experiments showed that PRN694 inhibited TCR signaling as well as TCR-induced T-

cell proliferation and prevented release of proinflammatory cytokines. PRN694 prevented T-cell 

prolymphocytic leukemia (T-PLL) cells growth with durable pharmacodynamic effects on ITK 

[98].  

 

CTN06 

CTN06 is a potent BMX inhibitor that induces autophagy and apoptosis in prostate cancer cells 

and blocks xenograft tumor growth in vivo [99]. Treatment of PC3 prostate cancer cells with 

CTN06 induced effective tumor cell killing through inhibition of BTK/ BMX signals. CTN06 

induced apoptosis of prostate cancer cells as well as sensitizing tumor cells to cytotoxic agents 

such as docetaxel. Moreover, CTN06 has been shown to impede the motility of prostate cancer 

cells [99]. 

 

Spleen tyrosine kinase (SYK) 

SYK is mainly expressed in hematopoietic lineage cells. It is normally involved in downstream 

signaling of immune receptors (e.g. BCR). SYK contributes to several biologic functions, 

including cell development, adhesion, proliferation, and differentiation [100].  

SYK is a prosurvival factor in B-cell malignancies and tumors of epithelial origins. It is 

constitutively active in malignancies such as CLL, non-Hodgkin's lymphoma (NHL), ALL, 

MCL, and Epstein–Barr virus-associated B-cell lymphomas. It is important for cell proliferation 

and survival and inhibition of SYK leads to tumor cells apoptosis [101-103].  

SYK overexpression has been noted in non-B cell hematologic malignancies such as AML [104] 

and T-cell lymphomas [105] in which immunoreceptor tyrosine-based activation motif (ITAM)-

containing receptors (e.g. TCR complex) are coupled to the activated SYK through SH2 domains 

[106]. SYK overexpression has been shown in melanoma cell lines and tumors [107]. 

In contrast, SYK has been shown to act as a tumor suppressor as described that it is absent in 

invasive breast carcinomas and the expression is associated with inhibition of the metastasis of 

tumor cells in invasive carcinomas [108]. Lack of SYK mRNA expression has been observed in 

http://en.wikipedia.org/wiki/Spleen_tyrosine_kinase
http://en.wikipedia.org/wiki/Syk
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patient with ductal carcinoma [109]. Low expression of SYK has been reported in hepatocellular 

carcinoma, and it has been reported to act as tumor-suppressor in pancreatic ductal 

adenocarcinoma [110]. 

Current data shows that SYK has dual roles and acts as a tumor promoter and tumor suppressor in 

cancer [111] and it is important to consider that it may not be a proper target in all types of 

tumors with SYK overexpression. 

 

Fostamatinib 

Fostamatinib (R788) was produced as the first-in-class SYK-TKI. It inhibits BCR signaling and 

antagonizes the supportive effects of stromal cells, decreases cells migration to chemokines and 

induces apoptosis of cells with SYK overexpression [112]. The inhibitory effects of this TKI are 

testing in several clinical trials of rheumatoid arthritis [113].  

Moreover, fostamatinib has been noted to be effective in inhibition of tumor cell growth in 

several malignancies [114].  

Fostamatinib has been evaluated in clinical trials for cancer treatment.  In the first trial, the 

effects have been investigated in relapsed B-cell NHL and CLL patients [114]. Diarrhea, 

neutropenia and thrombocytopenia were dose limiting toxicity and 200 mg twice daily was 

defined to be well-tolerated.  

In the second phase of this study, sixty-eight patients with B-NHL were recruited in 3 cohorts, 

including  DLBCL, follicular lymphoma (FL), and other NHL, including small lymphocytic 

leukemia (SLL)/CLL, marginal zone lymphoma (MZL), lymphoplasmacytic lymphomas, MCL, 

and mucosa-associated lymphoid tissue lymphoma [114]. Diarrhea, cytopenias, nausea, fatigue, 

and hypertension were the most common side effects. Median PFS was shown to be 4.2 months. 

Objective response rates were 55% (6 of 11) for SLL/CLL, 22% (5 of 23) for DLBCL, 11% (1 of 

9) for MCL, and 10% (2 of 21) for FL patients [114].  

 

PRT318 and P505-15 

PRT318 (PRT-060318) and P505-15 (PRT062607) are two selective SYK-TKIs and the effects 

have been evaluated on CLL cells survival and the interactions with tumor environment [115]. 

Both TKIs have shown to antagonize CLL leukemic cells survival following the stimulation of 

BCR and in coculture with nurse-like cells and suppress BCR-dependent secretion of chemokine 
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(C-C motif) ligand (CCL) 3 and CCL4 by leukemic CLL cells. Moreover, these TKIs inhibited 

CLL cell migration toward the chemokines chemokine (C-X-C motif) ligand (CXCL) 12, 

CXCL13 as well as inhibiting SYK phosphorylation after BCR triggering [115]. 

P505-15 inhibits SYK with IC50 value of 1-2 nM and blocks BCR-mediated signaling and 

activation in B cells with IC50 values of 0.27 and 0.28 μM, respectively [116].  

It has been shown that P505-15 suppressed signaling and reduced cell viability in NHL and CLL 

leukemic cells. Treatment of mice with this TKI inhibited the growth of NHL tumor in a 

xenograft model. Combination of P505-15 plus fludarabine showed the synergistic enhancement 

of primary CLL cells growth inhibition at nanomolar concentrations [117]. These TKIs have not 

been tested in human cancer clinical trials.  

 

Entospletinib 

Entospletinib (GS-9973) is another selective inhibitor of SYK. The effects have been tested in 

CLL. Inhibition of SYK decreased the survival of CLL cells and in combination with 

phosphoinositide 3-kinase (PI3K) δ-TKIs, induced synergistic inhibition of cell growth and 

disrupted chemokine effects at low concentrations [118]. 

 

This TKI is currently testing in a few clinical trials for the treatment of AML and B-cell 

malignancies and promising results have been observed in CLL. In a recent phase II study, the 

effects of entospletinib have been evaluated in patients with relapsed or refractory CLL (n=41) 

and NHL (n=145) patients [119]. Patients were treated with 800 mg of entospletinib twice daily. 

The most common treatment-associated side effects were dehydration, pyrexia, febrile 

neutropenia, pneumonia, and dyspnea. Neutropenia (14.5%) and reversible aspartate 

aminotransferase/alanine aminotransferase (AST/ALT) elevations (13.4%) were the most 

common grade 3/4 abnormalities. The PFS and objective response rates were 70.1% (95% 

confidence interval [CI]: 51.3%, 82.7%) and 61.0% (95% CI: 44.5%, 75.8%), respectively. The 

median PFS was 13.8 months (95% CI: 7.7 months, not reached) [119]. Overall, the data 

indicated proper efficacy and safety in all tested CLL patients. 

Currently two phase I and II trials are recruiting patients for testing the effects of entospletinib in 

relapsed or refractory hematologic malignancies (NCT01799889) and AML (NCT02343939). 
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MEK1/MEK2 tyrosine kinases and MAPK/ERK signaling pathway 

The mitogen-activated protein kinases or extracellular signal-regulated kinases (MAPK/ERK) 

pathway consists of several signaling molecules involved in communication of signals from cell 

membrane receptors to the nucleus. MAPK/ERK pathway is consisting of two classical and non-

classical pathways. MAPK pathway is the well-known pathway and is considered the classical 

pathway. The non-classical pathway involves MEK4, MEK7, c-Jun N-terminal kinases (JNK) 1-

3, MEK3, and MEK6/p38 molecules (p38α/β/γ/δ) as well as ERK5/MEK5 pathways [120]. These 

pathways are involved in several cellular functions, including regulation of gene expression, G1 

cell cycle progression before starting S cycle and cell division.  

MEK1 and MEK2 proteins are involved in cell proliferation, tumorigenesis and inhibition of 

apoptosis. The overexpression is associated with aberrant activation of the 

RAS/RAF/MEK/ERK1/2 pathway in several tumors and, therefore, is the ideal target for TBCT 

[121].   

Several selective/specific non-ATP-competitive inhibitors of MEK1 and MEK2 have been tested 

in preclinical and clinical settings (Table 1, Fig. 1). Moreover, combination of these inhibitors 

and cytotoxic agents as well as other TBCT agents has been studied [121].  

 

Trametinib 

Trametinib (GSK1120212, JTP 74057) is a selective TKI of MEK1/MEK2. It is a non-ATP-

competitive inhibitor. The effects of this TKI have been extensively tested in several preclinical 

and clinical experiments for the treatment of gastrointestinal cancers [122], NSCLC [123], 

colorectal carcinoma, and metastatic/BRAF mutant melanomas [124-127].  

On May 29, 2013, FDA approved trametinib for the treatment of patients with metastatic 

melanoma with V600E and V600K BRAF mutations. This approval was based on the improved 

PFS of 322 melanoma patients with BRAF V600E or V600K mutations in a phase III clinical 

trial [125]. In this trial, metastatic melanoma patients received either trametinib (2 mg once daily) 

or chemotherapy (dacarbazine or paclitaxel every 3 weeks). The primary and secondary end 

points were PFS and overall survival, respectively. Results showed a median PFS of 4.8 and 1.5 

months in the trametinib and chemotherapy groups, respectively (hazard ratio for disease 

progression or death in the trametinib group, 0.45; 95% CI: 0.33 to 0.63; P<0.001). The rate of 

http://en.wikipedia.org/wiki/Receptor_(biochemistry)
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overall survival was 81% in the trametinib group and 67% in the chemotherapy group at 6 

months (hazard ratio for death, 0.54; 95% CI: 0.32 to 0.92; P=0.01). The most common side 

effects were rash, diarrhea and peripheral edema in the trametinib group [125].  

Combination of trametinib with other SMIs or cytotoxic agents has been studied in several trials.  

In a phase I dose escalation trial (PACMEL), combination of trametinib with paclitaxel has been 

evaluated [128]. In this trial a fixed dose of paclitaxel and escalated dose of trametinib 

(maximum 2 mg daily) was used for the treatment of 15 patients with advanced melanoma or 

those who have received up to two previous lines of treatment for metastatic disease. The 

maximal dose of trametinib alone showed to be tolerable with weekly paclitaxel. The most 

frequent adverse effects were rash and fatigue. Overall survival and median PFS were 14.1 (95% 

CI: 4.6-not reached) and 5.5 months (95% CI: 1.8-7.8 months), respectively. Partial response was 

observed in 40% of patients (4 of 8 patients had NRAS mutations). Data showed that trametinib 

can be safe in combination with weekly paclitaxel in melanoma patients without V600 BRAF 

mutations [128]. 

In a phase Ib dose-escalation trial, the combination of the trametinib with buparlisib (PI3K 

inhibitor) was evaluated in 113 NSCLC patients with RAS- or BRAF-mutants, ovarian and 

pancreatic cancers [129]. Maximum tolerance dose was determined to be 70 mg for buparlisib 

plus 1.5 mg daily for trametinib. The major dose limited toxicities were stomatitis, diarrhea, 

dysphagia, and creatine kinase (CK) increase. Grade 3 and 4 side effects were observed in 73 

patients (65%), including CK increase, stomatitis, AST/ALT increase, and rash. For 21 ovarian 

cancer patients, the overall response and disease control rates were 29% and 76%, respectively 

with median PFS of 7 months. The least effects of combination therapy was observed in NSCLC 

(1/17 partial response) and pancreatic cancers (no response) [129].  

In another phase I trial, the effects of trametinib in combination with afuresertib (AKT inhibitor) 

were evaluated in twenty patients with solid tumors and multiple myeloma [130]. Grade 2 

esophagitis, grade 3 elevated AST, mucosal inflammation and hypokalemia were dose-limiting 

toxicities that were observed at once daily doses 1.5 and 50 mg of trametinib and afuresertib, 

respectively. Diarrhea, acneiform dermatitis, maculopapular rash, fatigue, dry skin, nausea, 

dyspnea, and vomiting were observed in 10% of patients. One and four patients showed partial 
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response (BRAF wild-type melanoma) and stable disease, respectively. Overall, the results 

showed that the combination of  trametinib/afuresertib (continuous daily dosing) was poorly 

tolerated; however, intermittent dose schedule was tolerated better [130]. 

 

AZD8330 

AZD8330 (ARRY-704) is a selective MEK1/MEK2 [131] and non-ATP-competitive inhibitor, 

with an IC50 value of 7 nM.  

In vitro effects of AZD8330 have been investigated in multiple myeloma cell lines IM9 and NCI-

H929. Data showed that AZD8330 decreased the cell viability, induced apoptosis and cell cycle 

arrest at G1 phase with IC50 values of 20 and 30 nM for IM9 and NCI-H929 cells, respectively 

[132]. AZD8330 could also induce apoptosis in Burkitt's lymphoma cells in high concentrations 

(1 μM) [133].  

 

AZD8330 effects have been evaluated in one clinical trial. In this phase I study, safety and 

tolerability were tested in eighty-two patients with advanced malignancies [131]. Patients were 

treated with either once or twice daily of AZD8330 with starting dose of 0.5 mg with dose 

escalations until a non-tolerated dose was observed. Dose-dependent dephosphorylated ERK was 

observed in peripheral blood mononuclear cells in doses higher than 3 mg. The most frequent 

adverse reactions were acneiform dermatitis, fatigue, diarrhea, and vomiting. Maximum tolerated 

dose was defined to be 40 mg/day. One and thirty-two patients showed partial response and 

stable disease, respectively [131]. 

 

Selumetinib 

Selumetinib (AZD6244 or ARRY-142886) is a selective MEK1/MEK2-TKI with an average IC50 

value of 14 nM [134]. Strong anti-tumor activity has been shown in preclinical studies in both in 

vitro (cell-growth experiments) and in vivo (xenograft models) [135-137]. The effects of 

selumetinib have been investigated in different tumors either alone or in combination with other 

agents [135-137]. 

Pharmacokinetic and pharmacodynamic of selumetinib have been checked in patients with 

advanced cancers [138]. The most frequent adverse effects were diarrhea, rash, fatigue, nausea, 



22 
 

and transient blurred vision. 8.3 hours was the median half-life of the drug in plasma after a 

single dose of selumetinib. ERK dephosphorylation was shown in 19 tested tumor biopsies; 

however, no partial responses were observed, and stable disease was only showed in two patients 

[138].  

 

Several phase II trials have tested the effects of selumetinib as monotherapy in serous carcinoma 

of the ovary or peritoneum, metastatic biliary cancers, melanoma, AML, hepatocellular 

carcinoma, and papillary thyroid carcinoma [139-143].  

Several trials have checked selumetinib in combination with other inhibitors and cytotoxic 

agents, including cixutumumab, vandetanib, temsirolimus, pemetrexed, gemcitabine, irinotecan, 

paclitaxel and carboplatin, and pemetrexed and cisplatin in several types of melanoma and other 

types of cancer [120]. 

Several other MEK inhibitors such as cobimetinib (melanoma and pancreatic cancer) [144-145], 

PD0325901 [146-147], pimasertib (lung, colorectal cancer, pancreatic adenocarcinoma,  

melanoma, and multiple myeloma) [148], binimetinib (MEK162, ARRY-162, ARRY-438162) 

(melanoma), and refametinib (hepatocellular carcinoma) [149-150] are ongoing in clinical trials 

for the treatment of different cancers. 

 

Phosphoinositide 3-kinases (PI3Ks) 

PI3K kinases are one of the most important families of nRTKs that are involved in proliferative, 

differentiation and survival pathways, including those of hematopoietic origin. PI3K kinases are 

classified into three subtypes. Class I is divided into IA and IB subsets and converts 

phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3)  

in response to cell stimulators that act as intracellular second messenger for activating other 

signaling proteins. Class IA PI3Ks, including PI3Kα, β, δ are activated by RTKs stimulation. 

PI3Kβ and class IB PI3K (PI3Kγ) are stimulated via G-protein–coupled hormone receptors [151]. 

The function and structure of class II and III are differentiated from the class I and will not be 

discussed here.  

Among various PI3K members, PI3Kδ has been extensively studied for TBCT. PI3Kδ is widely 

expressed in blood leukocytes, suggesting that it may be a proper target for different 

http://www.ncbi.nlm.nih.gov/pubmed/25376606
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hematological malignancies, including NHL, CLL and MCL in which PI3K pathways are 

constitutively active in the cells [152]. Thus, PI3K-TKIs might have therapeutic potential either 

as single drug or in combination with other therapies for different cancer indications. Several 

PI3K-TKIs have been developed against different PI3Ks members and have been approved by 

the FDA (e.g. idelalisib) or are in experimental settings (Table 1, Fig. 1). 

 

Idelalisib 

Idelalisib (CAL-101 or GS-1101) is the first-in-class inhibitor of the p110δ (catalytic subunit of 

PI3Kδ) isoform of PI3K, which has an expression pattern mainly restricted to cells of 

hematopoietic origin [153-154]. This SMI is a reversible and selective with an IC50 value of 2.5 

nM for p110δ isoform. It is 40 to 300 fold more selective for p110δ than other p110 isoforms 

[151].  

For the first time, the effects of idelalisib on tumor cells were examined in 2011 [155]. In this 

study, primary tumor cells from different malignancies were evaluated for sensitivity to idelalisib 

in vitro. Data showed significant sensitivity (efficient concentration, (EC) 50<1μM) in 23% of B-

cell ALL (B-ALL) cells, 26% of CLL and 3% of AML, but no effect on myeloproliferative 

neoplasm samples was observed. Results showed a strong activity of idelalisib in B-ALL and 

CLL cells suggesting a superior potential effects on malignant B cells [155]. 

The consequence of PI3K inhibition by idelalisib is to prevent signaling pathways that are 

involved in the homing of B cells in the bone marrow and lymph nodes [156]. The inhibition 

starts with blocking PI3K phosphorylation in malignant B cells. This inhibition results in AKT 

dephosphorylation and ERK phosphorylation. The chemotaxis, migration and secretion of the 

CCL3, CCL4 and CXCL13 by leukemic cells will be inhibited by idelalisib and finally the 

viability and adhesion of leukemic cells to endothelial cells and bone marrow stromal cells will 

be impaired [157].  

Idelalisib is a very effective agent that leads to rapid resolution of lymphadenopathy and 

splenomegaly. Moreover, it is effective in CLL patients with p53 gene mutations that have poorer 

prognosis [158]. 
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FDA approved idelalisib on July 23, 2014, for the treatment of patients with relapsed CLL, in 

combination with rituximab (anti-CD20 antibody). Moreover, FDA granted accelerated approval 

for the treatment of FL or SLL patients who have received more than two prior therapies as a 

single agent therapy [159]. The approval for CLL patients was based on the results of an 

international, placebo-controlled trial of patients in combination with rituximab to placebo in 

combination with rituximab [160].  

In one study, the effects of idelalisib were evaluated in multiple myeloma [161]. SiRNA silencing 

of p110δ induced significant inhibition of tumor cell growth. Moreover, treatment of multiple 

myeloma cell lines and primary cells with idelalisib showed cytotoxic effects as well as 

inactivation of AKT; however, no effects were observed on normal peripheral blood mononuclear 

cells. Prior treatment of multiple myeloma cells with IL-6, insulin-like growth factor-1 (IGF-1) 

and coculture with bone marrow stromal cell followed by idelalisib treatment did not rescue cells 

from apoptosis. On the other hand, it was shown that inhibition of p110δ induced autophagy of 

malignant cells. Combination of idelalisib with bortezomib showed synergistic cytotoxic effects 

against multiple myeloma cells [161]. Although the effects have been shown to be promising in 

multiple myeloma; however, there is no clinical trial testing idelalisib for the treatment of this 

malignancy.  

Idelalisib is investigating in clinical settings for the treatment of several B-cell malignancies, 

including relapsed/refractory MCL, FL, CLL, indolent NHL, MZL, SLL, and lymphoplasmacytic 

lymphoma as single agent or in combination with other drugs. It is in phase III clinical trials 

evaluating drug combination with rituximab and/or bendamustine (NCT01569295).  

 

Pictilisib  

Pictilisib or GDC-0941 is a selective/specific PI3Kα/δ-TKI with an IC50 value of 3 nM, proper 

clinical tolerability and anti-neoplastic activity against tumor cells. It inhibited proliferation and 

survival of medulloblastoma cell lines. Cell treatment with this TKI decreased AKT 

phosphorylation and activation. Moreover, pictilisib attenuated the migration of medulloblastoma 

cells and a population of CD133
+
 stem cells [162]. Pictilisib augmented the anti-tumor activity of 

the standard medulloblastoma chemotherapeutic etoposide (VP16). Furthermore, it impaired 

tumor cell growth and prolonged the survival of tumor cells in a xenografted mice model [162].  
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Pictilisib reduced the growth of prostate cancer cell lines such as LNCaP and C4-2B through 

dephosphorylation of PI3Kα/δ followed by inactivation of AKT [163]. MAbs targeting HER2 

and HER3 have shown synergistic anti-tumor effects when combined with  pictilisib [163]. 

In the first phase I study of pictilisib, tolerability, safety, dose-limiting toxicities, maximum-

tolerated dose, pharmacodynamics, pharmacokinetics, and clinical activity were investigated in 

sixty patients with solid tumors [164]. Data showed that pictilisib is well tolerated. Grade 1-2 

rash, nausea, and fatigue were the most common toxicities, whereas grade 3 maculopapular rash 

with dosage of 450 mg was observed in 2 of 3 patients and in 1 of 7 patients with dosage of 330 

mg. AKT dephosphorylation was noted  at Ser 473 residue with  >90% inhibition in platelet-rich 

plasma. Moreover, a melanoma patient with BRAF mutation (V600E) and one ovarian cancer 

patient with platinum-refractory epithelial showed PTEN loss and amplification of PIK3CA and 

exhibited partial response [164]. 

In a high-throughput screening of more than 500 cancer cell lines, including 46 pancreatic ductal 

adenocarcinoma lines, the combination of the MEK1/ MEK2 inhibitor, AZD6244 and pictilisib 

has been tested [165]. Data showed that pancreatic ductal adenocarcinoma cell lines were mostly 

non-responder to single-agent therapies; however, the combination induced apoptosis of tumor 

cells [165].  

Other investigations have shown the promising effects of pictilisib in different types of tumors, 

including pediatric glioblastoma [166], T-ALL leukemia [167], breast [168] and colorectal 

cancers [169], melanoma [170], AML [171], multiple myeloma [172], and refractory/aggressive 

MCL patients [173].  

 

Buparlisib 

 Buparlisib (NVP-BKM120) is a selective pan-PI3K inhibitor with IC50 values of 52, 166, 116, 

and 262 nM for PI3Kα, β, δ, and γ, respectively. The effects have been investigated in several 

tumors and have exhibited strong anti-tumor activity in several preclinical animal models. 

Several clinical trials are currently undergoing in patients with solid tumors. Moreover, it has 

anti-tumor activity in multiple myeloma [174] and FL [175].  
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In a phase I dose-escalation study of buparlisib, thirty-five patients with advanced solid tumors 

were treated with 12.5 to 150 mg/day buparlisib [176]. The most common dose-limiting toxicities 

were grade 2-4 mood alteration, epigastralgia, rash, and hyperglycemia at doses of 80-150 

mg/day and the maximum-tolerated dose was shown to be 100 mg/d. Rash, hyperglycemia, 

diarrhea, anorexia, mood alteration (37% each), nausea (31%), fatigue (26%), pruritus (23%), and 

mucositis (23%) were also the most common treatment-associated side effects. These data were 

supported by another phase I dose-escalation study on Japanese patients [177]. 

In a phase Ib trial of buparlisib, the effects in combination with letrozole in estrogen receptor-

positive (ER
+
)/HER2-negative metastatic breast cancer patients have been tested [178]. The 

maximum-tolerated dose of buparlisib was 100 mg/day and grade 2 disorders such as nausea, 

hyperglycemia, transaminitis, fatigue, and mood disorders were the most common drug-related 

side effects. 31% of patients that were treated with maximum-tolerated dose showed clinical 

benefit rate e.g. lack of progression ≥ 6 months after treatment. Data showed a safe profile of 

letrozole and buparlisib combination [178]. 

Several phase I and II clinical trials are investigating the effects of buparlisib alone or in 

combination in CLL, recurrent glioblastoma, recurrent/refractory primary central nervous system 

lymphoma, NSCLC, advanced breast cancer, relapsed or refractory NHL, and other tumors 

(clinicaltrials.gov). 

 

Pilaralisib 

Pilaralisib (SAR245408, XL147) is a pan-class I PI3K inhibitor. This TKI is type I ATP-

competitor with IC50 values of 39, 383, 36 and 23 nM for PI3Kα, β, δ and γ, respectively. It is 

currently in clinical trials for cancer treatment. 

Pilaralisib prevented the formation of PIP3 from PIP2 and inhibited the activation of AKT, 

p70S6K and S6 phosphorylation in different tumor cell lines such as breast cancer in cellular 

assays and xenograft mice models. Repeated treatment with pilaralisib has been shown to induce 

substantial inhibition of tumor cells growth in xenograft mice models. Combination of pilaralisib 

with cytotoxic drugs showed strong anti-tumor activity in mice xenograft models compared to 

either single agent treatment [179]. 
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Treatment of breast cancer cells with constitutive activation of PI3K inhibited cell growth, 

reduced AKT, pS6 and expression of signal transducers in the PI3K/AKT/mTOR pathway. 

Inhibition of PI3K in HER2-overexpressing cell lines induced the upregulation of expression as 

well as phosphorylation of several RTKs such as HER3, insulin receptor (INSR), insulin-like 

growth factor 1 receptor (IGF-1R), and fibroblast growth factor receptor (FGFR) 2. Furthermore, 

inhibition of forkhead box protein (Fox)O1 and FoxO3a transcription factors prevented the 

mRNAs expression of these RTKs upon suppression of PI3K. Downregulation of HER3 by 

specific siRNA and treatment of HER2
+
 cells with trastuzumab or lapatinib enhanced the effects 

of pilaralisib on breast cancer cells. In BT474 xenografts, trastuzumab and lapatinib augmented 

the effects of pilaralisib and inhibited the activation of PI3K/AKT signaling pathway and 

inhibited the growth of tumor cells [180].  

The maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics have been 

investigated in phase I trial of pilaralisib alone or in combination with erlotinib [181]. 

Pharmacodynamic analyses showed inhibition of PI3K, MAPK and EGFR signaling pathways. 

Of 27 patients, one and 14 patients showed partial response and stable disease, respectively. 

Rash, diarrhea and fatigue were the most common treatment-related side effects. Overall, data 

showed limited anti-tumor activity of the combination treatment. 

In a phase II clinical trial, the efficacy and safety of the pilaralisib were evaluated in 67 patients 

with advanced or recurrent endometrial carcinoma [182]. Objective response rate, proportion of 

patients with PFS>6 months and safety were the primary endpoints. Tumor responses (complete 

or partial) were observed in two patients. Rate of PFS (>6 months) was 11.9%. Diarrhea, rash and 

fatigue were the most common treatment-related cytotoxicities and rash, diarrhea and elevated 

ALT were reported as grade ≥3 treatment-related side effects. 

The maximum tolerated dose, pharmacokinetics, efficacy, and safety of pilaralisib in combination 

with trastuzumab (arm 1) or trastuzumab plus paclitaxel (arm 2) were tested in a phase I/II dose-

escalation study in 42 patients with HER2
+
 metastatic breast cancer [183]. The maximum 

tolerated dose of pilaralisib was defined at 400 mg once daily in all patients. Three patients in 

arm 1 and two in arm 2 showed dose-limiting toxicity, including rash and neutropenia. Diarrhea 

(23.8 % vs. 66.7 % in arm 1 and arm 2, respectively), rash (33.3 vs. 38.1 %) and fatigue (14.3 vs. 
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42.9 %) were the most common side effects. Erythematous rash (9.5 %) in arm 1 and diarrhea, 

peripheral neuropathy and neutropenia (14.3 % each) in arm 2 were the most common treatment-

associated grade ≥3 side effects. No significant treatment responses were observed in arm 1; 

however, four of 20 tested patients in arm 2 showed a partial response. Data showed that 

pilaralisib plus trastuzumab with or without paclitaxel had proper safety in breast cancer patients 

and proper clinical activity in treated patients in arm 2 [183]. 

 

NVP-BYL719 

NVP-BYL719 is a potent and selective PI3Kα inhibitor that was identified in 2013 [184]. 

Treatment of HER2
+
 cell lines as well as trastuzumab resistant cells with NVP-BYL719 

demonstrated strong anti-tumor activity in vitro and in xenograft models [185]. Moreover, it 

exhibited significant anti-tumor effects on erlotinib resistant pancreatic ductal adenocarcinoma 

cells in vitro and in xenograft mice models [186]. 

The in vitro impacts of NVP-BYL719 have been investigated on proliferation, apoptosis and cell 

cycle arrest of human and murine osteosarcoma cells [187]. This class I TKI reduced 

proliferation of tumor cells by blocking cell cycle in G0/G1 phase and inhibited osteosarcoma 

cells migration. NVP-BYL719 significantly decreased tumor progression and tumor bone 

formation in mice model of osteosarcoma, as noted by the reduction of Ki67
+
 cells and 

vascularization of tumor [187]. 

NVP-BYL719 is currently in phase I/II trial as a potent therapeutic TKI to treat recurrent or 

metastatic head and neck squamous cell carcinoma (NCT01602315). 

Other selective PI3K inhibitors, including AMG 511, GNE-490, CNX-1351, HSW 243, and AS-

252424 are testing in preclinical experiments [188]. 

 

Zeta-chain-associated protein kinase 70 (ZAP-70)  tyrosine kinase 

ZAP-70 is a member of SYK family and is normally expressed by T cells and NK cells and is a 

major part of the TCR proximal signaling protein. The molecular weight is 70 kDa and plays a 

http://en.wikipedia.org/wiki/T_cells
http://en.wikipedia.org/wiki/Natural_killer_cells
http://en.wikipedia.org/wiki/KDa
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crucial role in T-cell signaling [189]. It plays a major role in immune responses by T cells and is 

involved in inflammatory and autoimmune diseases [190]. 

TCR is the major activator of T lymphocytes through binding to antigens presented by antigen 

presenting cells (e.g. dendritic cells and B cells) via the human leukocyte antigens (HLA) [191]. 

Upon activation, the coreceptor complex, including TCR-CD4 or TCR-CD8 binds to the HLA 

molecule and activates the LCK as the coreceptor associated tyrosine kinase. Then the 

intracellular parts of the CD3 complex (ITAM) become phosphorylated by LCK and creates a 

docking site for ZAP-70. The outcome of these reactions is the activation of T cell and the 

transcription of different genes that induce T cells proliferation, differentiation and cytokine 

secretion [191]. 

Several compounds have been produced that selectively inhibit ZAP-70 [192-193]. Currently, 

most of these inhibitors are used for studying the function of ZAP-70 in T cells and up to date 

none of these inhibitors has been tested for inhibition of tumor cells [194-195]. Moreover, 

targeting ZAP-70 in cancer patients might induce deep tumor suppression [196]; however, these 

inhibitors may be useful for the treatment of autoimmune and allergic disorders as well as 

preventing transplants rejection by the immune system. 

 

FES and FER kinases 

Feline sarcoma proto-oncogene (FES/FPS) and FES-related (FER) tyrosine kinases are two 

nRTKs involved in cell signaling. FES is the counterpart of feline sarcoma retrovirus protein. 

FES is involved in the maintenance of cellular transformation, modulates cellular signaling, 

differentiation, normal hematopoiesis, the innate immune response, and vasculogenesis [197]. 

Moreover, it acts downstream of cell surface receptors such as FCεR1 signaling in mast cells and 

regulates several functions, including actin cytoskeleton, microtubule assembly, cell to cell 

contacts, mast cell degranulation, cell scattering and migration. FES phosphorylates BCR and 

acts as a downregulator of BCR through phosphorylation of hematopoietic lineage cell-specific 

protein (HCLS1/HS1), platelet endothelial cell adhesion molecule (PECAM) 1, STAT3, and 

tripartite motif-containing (TRIM) 28 molecules [198]. 

 

Overexpression, hyperactivation and gain-of-function mutations of FES gene have not shown to 

be associated with outgrowth and uncontrolled proliferation of many cancers. In lymphoid 

http://en.wikipedia.org/wiki/Lck
http://en.wikipedia.org/wiki/Feline_sarcoma_oncogene
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cancers hyperactivation of FES has shown to be important in supporting constitutively active 

receptors such as the FLT3 mutants expressed in AML cells. Inhibition of FES expression using 

siRNAs has been shown to decrease AML cell survival [199]. 

Targeting FES kinase by TKIs is at the preliminary stages and a few studies have described the 

production of selective FES-TKIs.  

In the first report, the inhibitory effects of 21 FES-TKIs for preventing autophosphorylation and 

tubulin polymerization have been described in Cos-7 cell line [197]. Of 21 compounds, the 

TAE684 compound showed the highest effects and prevented autophosphorylation of FES at Tyr 

713 residue as well as inhibition of microtubule association. Nine inhibitors reduced FES 

autophosphorylation and microtubule association in at least a subset of cells. In contrast to these 

compounds, HG-7-27-01 (type II TKI) decreased FES autophosphorylation in 0–15% of cells at 

concentrations below the cytotoxicity threshold [197].  

 

Several other nRTKs are involved in cell signaling pathways; however, some of them act as 

tumor suppressors and are not ideal candidates for targeting by TKIs. C-terminal SRC kinase 

(CSK) and megakaryocyte-associated tyrosine kinase (MATK) or CSK-homologous kinase 

(CHK) are examples and have not been described in this article. 

 

Conclusions and future prospective 

Tyrosine kinase inhibitors (TKIs) introduction to the list of agents for cancer treatment has 

greatly improved the outcome of cancer treatments. However, still several undesirable effects 

such as off-target effects have dampened the benefits. The high sequence homology of more than 

500 kinases has blunted the development of selective/specific kinase inhibitors. Most of current 

TKIs in preclinical or clinical developments as well as those, which have been approved for 

cancer treatment, belong to the type I TKIs and are non-selective and multi-targeted inhibitors. 

These inhibitors that target multiple kinases might be acceptable and desirable as a therapeutic 

agent; however, they may not be proper for personalized medicine. Selective inhibitors are more 

pharmacologically relevant for the dissection of complicated signaling pathways. Currently, 

several researches have focused on developing TKIs with increasing selectivity by targeting 

different regions outside the ATP-binding pocket. Non-type I inhibitors have fewer off-target 
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effects and may have less side effects for cancer treatment than type I. In addition to cancer, these 

TKIs might have desirable effects on other types of life-threatening diseases such as autoimmune 

disorders. These new attitudes may pave the way to potentially new areas for drug development 

and provide valuable tools for evaluating signal transduction pathways. Moreover, several 

combinations of TKIs with other inhibitors, mAbs and chemotherapy agents have shown proper 

clinical outcomes. On the other hand, proper combination regimens might prevent undesirable 

effects and target cancer stem cells, as the main cells for drug resistance and cancer recurrence. A 

deeper understanding of the structure of drug targets in cancer as well as developing new 

methods for discovering and evaluating new TKIs might be necessary to improve the field of 

TBCT using small molecule inhibitors.  
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Figures legend: 

Figure 1. Downstream signaling events and interruption by small molecule inhibitors 

(SMIs). SMIs of intracellular kinases in cell signaling pathways with significant activity are 

indicated. Different small molecule inhibitors target and inhibit specific molecules that are 

essential for tumor survival, proliferation, differentiation, and invasion. 


