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“Someone is sitting in the shadow today 

because someone planted a tree a long time ago.” 
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ABSTRACT 

The rearranged during transformation (RET) tyrosine kinase regulates a plethora of 
biological processes such as cell survival, proliferation and migration and is essential for the 
normal development of several organs such as the sensory, enteric and sympathetic nervous 
systems and the kidneys. After RET activation by its ligands several intracellular tyrosine 
residues are phosphorylated and serve as binding sites for adaptor proteins that activate 
different downstream signalling pathways. One prominent binding site is tyrosine 1062. This 
residue is part of a binding motif for the phosphotyrosine binding (PTB) proteins DOK1-6, 
FRS2 and SHCA,B,C. The binding of PTB adaptors depends on the amino acids N-terminal 
of the tyrosine, and this feature can be utilised to engineer adaptor-specific receptors. 

RET is known to be recruited into cholesterol-rich membrane domains upon activation, but 
the mechanism and biological importance of this translocation were previously unknown.    
In Paper I, we analyse the influence of the membrane domain localization of RET and its 
adaptors on their signalling characteristics. We show that the lipid raft-associated FRS2 
recruits RET to lipid raft domains, while SHC localizes it to other membrane regions. A lipid 
raft-bound SHC (SHCMLS) resembles FRS2 both in signalling, translocation of RET and 
biological functionality, with diminished support of cell survival and increased migration of 
SHCMLS compared to normal SHC. In contrast to SHC, both FRS2 and SHCMLS functions 
depend on lipid raft integrity. 

RET signalling is important for the development of several organ systems. In particular Y1062 
plays a role in both the enteric and sympathetic nervous system and in nephrogenesis, 
however the specific roles of the different Y1062 binding proteins in vivo were unknown. In 
Paper II I investigate the role of RET signalling via DOK, FRS2 or SHC from Y1062 in vivo. 
Ret9Frs/9Frs mice show severe enteric aganglionosis, reduced soma size of dorsal root ganglion 
(DRG) neurons and mechanical hypersensitivity at early postnatal stages. Ret9Shc/9Shc mice on 
the other hand show a misregulation of sensory markers together with a hypersensitivity for 
cold and itch stimuli. In the sympathetic nervous system, Ret9Frs/9Frs animals display a reduced 
repression of cholinergic markers, with unchanged noradrenergic specification. We conclude 
that the studied adaptors have tissue- and cell type-specific roles and that they are main 
regulators of cell type specification both in the sensory and sympathetic nervous system. 

One central process during sympathetic nervous system development is the segregation of the 
noradrenergic and cholinergic lineages. While several regulating factors are known, the 
knowledge about how they are organized into a regulatory network is incomplete and is still 
missing several regulatory elements. In Paper III we investigate the gene regulatory network 
that controls this segregation. We show that sympathetic progenitors are a hybrid population 
expressing markers of both the cholinergic and noradrenergic lineage and that the homeobox 
transcription factor HMX1 is required both for the repression of the expression of Ret and 
other cholinergic markers and for the maintenance of noradrenergic marker expression. RET 
on the other hand maintains cholinergic marker expression and supresses HMX1.  
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1 INTRODUCTION 

1.1 RECEPTOR TYROSINE KINASE SIGNALLING 

The adult mammalian body consists of millions of cells of various types and functions. Each 

of these cells originates from a single oocyte, which, during development, divides and 

multiplies, generating stem and progenitor cells of progressive specificity, to finally assume a 

fully differentiated state. This process is tightly controlled by external and internal signals, 

through direct cell-cell interactions, locally active secreted molecules like growth factors, or 

systemically acting hormones. All of these signalling molecules are registered and processed 

by the target cells through receptors that in most cases are localized on the cell surface. 

1.1.1 Receptor tyrosine kinases 

One class of cell surface receptors are the so-called receptor tyrosine kinases (RTKs). In 

humans, 58 different RTKs have been described that can be grouped into 20 families 

(Lemmon and Schlessinger, 2010). 

Despite certain functional differences, all RTKs share a common structure and a similar 

activation mechanism. They all have an extracellular domain that constitutes the ligand 

binding domain, a single transmembrane domain and an intracellular tyrosine kinase 

domain. The intracellular domain contains one or more tyrosine residues (Y) that can be 

phosphorylated upon receptor activation by ligand binding.  

With few exceptions, inactive RTKs are monomeric molecules, and ligand binding to the 

receptor results in receptor dimerization. This dimerization leads to conformational changes 

that release cis-autoinhibitory elements and result in auto-phosphorylation of the receptors 

(Nolen et al., 2004). The insulin receptor (IR) and insulin growth factor 1 receptor are 

exceptions, as they are expressed as disulphide dimers and ligand binding merely induces 

conformational changes and thereby auto-phosphorylation (Ward et al., 2007). 

The phosphorylation of tyrosines is the starting point for signalling cascades, resulting in 

different biological responses. Through the wide variety of signalling pathways initiated by 

RTKs they control processes such as proliferation, survival, migration, differentiation, cell-

cycle control and metabolism (Lemmon and Schlessinger, 2010). 
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Mutations in RTKs can result in the misregulation of these processes and are therefore the 

basis of several human pathologies, including cancer. Mutations of an RTK may result in 

constitutive receptor activation independent of ligand availability, resulting for example in 

aberrant proliferation and carcinogenesis. 

1.1.2 Receptor tyrosine kinase docking proteins 

Intense research efforts have delineated signalling pathways underlying the biological effects 

of RTKs. The phosphorylation of tyrosines by autocatalytic activity of intracellular tyrosine 

kinase domains results in the generation of binding sites for intracellular docking proteins. 

Two important classes of such proteins are those that contain phosphotyrosine binding (PTB) 

or Src homology 2 (SH2) domains (Lemmon and Schlessinger, 2010).  

The first PTB domain was reported in SHC, a protein containing both a PTB domain at the 

amino-terminus and a carboxy-terminal SH2 domain (Blaikie et al., 1994; Gustafson et al., 

1995; van der Geer et al., 1995). To date, about 60 different PTB domains have been 

identified in the human proteome (reviewed in Uhlik et al., 2005). 

All PTB domains share a common basic structure: Two orthogonal β-sheets align into a 

sandwich-like structure, while a carboxy-terminal α-helix caps the positively charged binding 

pocket. Depending on the mode of phosphotyrosine binding, PTB domains are classified into 

three groups. The phosphorylation-dependent SHC-like PTB domains, which bind the 

oxygen of the phosphate group in a triangular fashion between two arginines and one lysine 

(Zhou et al., 1995), the IRS-like group, which also depends on tyrosine phosphorylation, but 

binds the phosphoryl oxygen through interaction with two arginine residues (Eck et al., 1996; 

Zhou et al., 1996) and the phosphorylation-independent group of Dab-like domains (Howell 

et al., 1999). In addition to the common structure of a β-sheet sandwich with C-terminal cap, 

the SHC- and DAB-like PTB domains have two additional α-helices, one between two of the 

β-strands and one at the N-terminus. IRS-like PTB domains in contrast have only very 

truncated N-terminal α-helices or lack them altogether (Eck et al., 1996; Zhou et al., 1996). 

The SHC PTB domain contains also a unique elongated loop region between the α2 helix and 

the β2-strand that seems to partially reach around the bound molecule and that has been 

reported to be directly involved in the pY interaction, although the biological significance of 

this interaction is still unknown (Zhou et al., 1995; Deshmukh et al., 2010). 
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Well-known examples of IRS-like PTB domain proteins are the IRS1, FRS2 and DOK 

proteins, while the SHC family as well as tensin and Numb are representatives of SHC-like 

domain containing proteins. 

A feature distinguishing PTB proteins from other adaptors like e.g. phospholipase C gamma 

(PLCγ) is their lack of intrinsic catalytic activity. Instead they usually contain binding sites for 

other interaction domains, such as the PH, SH2 or SH3 domains of downstream signalling 

molecules, which link RTK activation to the different intracellular signalling pathways (Uhlik 

et al., 2005; Pawson, 2007; Lemmon and Schlessinger, 2010). 

1.1.3 RTK signalling pathways 

The most prominent signalling pathways controlled by RTKs and their PTB adaptors are the 

mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) 

pathways.  

1.1.3.1 MAPK 

MAPK signalling can be subdivided into four families of signalling pathways that share the 

most upstream signal mediators, but differ in their downstream targets ERK, JNK, p38 and 

BMK-1 (Burotto et al., 2014). Signalling through ERK is the best-described MAPK pathway 

and is usually seen as the classical MAPK pathway. 

RTK activation and receptor phosphorylation generate binding sites for docking proteins like 

SHC, GRB2 or GAB1/2 (Schlessinger, 2000; Lemmon and Schlessinger, 2010). Binding and 

subsequent phosphorylation of these docking proteins lead to the recruitment of further 

downstream effector molecules such as the Ras-guanine exchange factor son of sevenless 

(SOS), which in turn can activate RAS. RAS then activates MAPK kinase kinases (MAPKKK) 

of the RAF family, amongst others. MAPKKK activate MAPKK, most prominently MEK1/2, 

followed by activation of the MAPK effector ERK1/2. ERK proteins then elicit cell specific 

responses. It has been shown that effect-determining factors include the localization of ERK, 

as cytosolic ERK regulates e.g. cytoskeletal proteins (Pullikuth and Catling, 2007), while 

nuclear ERK regulates gene-expression through phosphorylation of transcription factors 

(Zassadowski et al., 2012). In addition to subcellular localization, also timing and intensity of 

the signal seem to be decisive for the outcome. During short-term activation of ERK, c-FOS is 

rapidly degraded in the nucleus, but following long-term ERK activation it gets 
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phosphorylated and acts to further strengthen ERK signalling (Murphy et al., 2002; Murphy 

and Blenis, 2006).  

As MAPK signalling is a central factor in the control of cell proliferation, it is not surprising 

to find deregulated signalling as the underlying cause of several forms of cancer, for example 

melanoma (Burotto et al., 2014). For this reason, members of this pathway are attractive 

therapeutic targets and several pharmaceutical drugs have been developed that target MAPKs 

(Carter et al., 2013; Cossa et al., 2013).   

1.1.3.2 PI3K 

Another pathway regulated by RTKs are the phosphatidylinositol-3-kinases (PI3Ks).  

Their major role is to phosphorylate phosphatidylinositol (PtdIns)-4,5-diphosphate (PIP2) to 

generate PtdIns-3,4,5-triphosphate (PIP3). This process is reversed by PTEN, which therefore 

provides a negative regulatory mechanism for PI3K signalling (Maehama and Dixon, 1998). 

Following PIP2 phosphorylation, AKT is translocated from the cytosol to the membrane-

residing PIP3 through its PtdIns-interacting pleckstrin homology (PH) domain (Andjelković 

et al., 1997). Once at the membrane, AKT is phosphorylated by PDK1 (Wick et al., 2000) and 

either activates cytosolic target proteins such as the mammalian target of rapamycin 

(mTOR) complex 1 (Navé et al., 1999; Aoki et al., 2001) or translocates into the nucleus to 

exert its roles there. AKT controls a variety of cellular processes, for example survival 

through either inhibition of pro-apoptotic or activation of anti-apoptotic factors, 

proliferation through control of cell cycle regulators or migration by interaction with 

cytoskeletal proteins (reviewed in Davis et al., 2015). 

Similar to MAPK signalling, also modifications of the PI3K pathway are a common cause of 

cancer (Marone et al., 2008; Pitt and Chen, 2008). Both inhibitory mutations of PTEN and 

gain-of-function mutations of AKT can result in aberrant cell growth and tumour formation 

(Zbuk and Eng, 2007). Interestingly, a profound crosstalk between MAPK and PI3K has been 

found. In addition to RAF, RAS can also activate PI3Ks, AKT can inhibit RAF, and ERK can 

assist AKT by activating mTORC1 directly or by inhibition of TSC2 alongside AKT 

(Mendoza et al., 2011). 

1.1.4 Cell membrane organization 

Biological membranes are a complex system consisting of a mix of various kinds of proteins 

and lipids. While the textbook model of a ‘fluid mosaic’ is a great model for illustration and 
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general understanding of membrane function, evidence has accumulated that it presents a 

very simplified view of cell membrane biology and function. Due to a much higher protein 

content of biological membranes than usually visualized, the biophysical implications of 

membrane composition are very different from a true fluid structure (Engelman, 2005). 

The cell membrane is composed of three classes of membrane lipids: Cholesterol, 

glycerophospholipids and sphingolipids, with glycerophospholipids being the most abundant 

lipid. Their general structure of a hydrophilic head with a long hydrophobic tail gives rise to 

the lipid bilayer, with the lipophilic tails facing inwards and the hydrophilic heads facing the 

aqueous surrounding. This structure enables the cell membrane to integrate proteins that 

either contain a hydrophobic domain or that are subject to a posttranslational addition of an 

anchor that recruits and attaches them to the membrane. 

Evidence has accumulated that has led to the idea that the membrane is not a uniform system, 

but that certain lipids form local clusters of somewhat different steric character and density, 

and that some proteins are preferentially localized in such domains. One such domain are the 

so-called lipid rafts that represent sterol and sphingolipid-enriched nanodomains and that 

assemble specific sets of proteins (Simons and Sampaio, 2011). 

Disruption of these lipid ordered domains can change or even abolish protein function. In 

addition to merely serving as an anchoring site, some sphingolipids have also been shown to 

directly regulate receptor function. For example, GM3 ganglioside can inhibit EGFR 

autophosphorylation through interaction with a glycan residue on the receptor (Coskun et 

al., 2011), and GM1 increases RET activity in striatal cells both in vitro and in vivo and is able 

to partially recover dopamine defects in a mouse model of Parkinson’s disease (Newburn et 

al., 2014). GM1 was also shown to increase PI3K signalling through Trk receptors 

(Duchemin et al., 2008). 

1.1.5 Establishing signal specificity 

In face of the different signalling pathways and potential cell biological outcomes of RTK 

activation the question arises how signal specificity can be achieved. While some specificity 

certainly is derived from differential expression patterns of receptors and docking proteins in 

different cell types, as well as limited ligand availability, some of the docking proteins are 

shared by several RTKs within the same cell type, and in some cases several adaptor proteins 

share one and the same phosphotyrosine residue. 
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PTB proteins share a common NXXpY binding motif (Kavanaugh et al., 1995). Additionally 

to this core motif, PTB proteins interact with residues amino-terminal of NXXpY. Of 

particular importance are amino acids at positions -4 to -8 of the pY residue, as they control 

binding affinity and stabilize an otherwise weak binding. By this mechanism PTB domain 

proteins can discriminate between different binding sites and generate a receptor-specific 

PTB protein profile (He et al., 1995; Wolf et al., 1995; Zhou et al., 1995). The PTB motif of 

the IR for example is readily bound by IRS1/2, but SHC binding to the same motif is of much 

lower affinity, and while the Tropomyosin receptor kinase A (TRKA) is bound by SHC and 

FRS2, EGF appears to signal exclusively via SHC family members (Sorkin, 2001; Ceni et al., 

2014; Du and Wei, 2014). 

Consistent with these studies, the IR, which associates primarily with the PTB domain of 

IRS1, but not SHC, can be re-engineered to selectively interact with SHCA in vitro by amino 

acid substitution at the -5-position in the sequence N-terminal to the core NXXpY PTB 

domain binding site (van der Geer et al., 1999). 

Interestingly, some PTB domain proteins are able to bind peptides independently of tyrosine 

phosphorylation. The FRS2 PTB domain binds constitutively to an extended peptide 

sequence in the juxtamembrane region of the fibroblast growth factor receptor 1 (FGFR1) 

that is devoid of a NXXpY motif (Xu et al., 1998; Ong et al., 2000). However, although FRS2 

is constitutively bound to the FGF receptor, signalling downstream of FRS2 is initiated only 

upon ligand binding to the receptor. 

Another mechanism controlling signalling specificity is the subcellular localization from 

where the receptor is signalling. As adaptor proteins are built up of different domains and are 

subject to different posttranslational modifications they are recruited to different subcellular 

compartments. While some adaptors are primarily cytosolic, such as SHC (Ravichandran et 

al., 1997), the FRS2 adaptor has a myristoylation sequence that results in its recruitment to 

lipid raft domains of the cell membrane (Gotoh et al., 2004). As shown in paper I, artificial 

recruitment of SHC to lipid rafts through a membrane localization sequence (MLS) changes 

its signalling properties, making it more similar to FRS2 in the context of RET signalling. In 

addition to these mere biochemical changes this also leads to functional differences in 

supporting cell survival and migration (Lundgren et al., 2008a). 
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1.2 THE RET TYROSINE KINASE 

1.2.1 RET architecture and interactions 

The rearranged during transformation (RET) receptor was discovered in 1985 by Takahashi 

et al. as part of a rearrangement of two genes during transfection of NIH 3T3 cells, resulting 

in a transforming activity (Takahashi et al., 1985). 

Moving from amino- to carboxy-terminus, the extracellular domain of RET (RETECD) is built 

up of four cadherin-like repeats and a cysteine-rich domain, with a calcium binding site 

between cadherine-like domain 2 and 3. The RETECD is the ligand interaction domain of RET. 

A single-spanning transmembrane domain connects the extra- and intracellular segments. 

On the intracellular side, the juxtamembrane segment is followed by the tyrosine kinase 

domain and the C-terminus (Airaksinen and Saarma, 2002). 

In humans, RET is expressed in three isoforms with different C-termini that are generated 

through alternative splicing. The RET gene contains 21 exons, of which all isoforms contain 

the first 19 exons. Splicing of exon 19 into exon 20 generates RET51. RET43 on the other 

hand skips exon 20, and is spliced into exon 21 instead. Generation of RET9 does not require 

any splicing, but includes additional codons in exon 19 (Ivanchuk et al., 1997; Fleming et al., 

2015). After the last shared amino acid G1063, the isoforms have 9 (RET9), 43 (RET43) or 51 

(RET51) additional amino acids (Airaksinen and Saarma, 2002). In contrast to RET9 and 

RET51 that are found in many vertebrate species, RET43 is only found in primates, and even 

there only at low expression levels (Carter et al., 2001). 

1.2.2 RET signalling complexes 

RET is the receptor for the members of the glial cell derived neurotrophic factor (GDNF) 

family of ligands (GFLs), namely GDNF, Neurturin (NRTN), Artemin (ARTN) and 

Persephin (PSPN). 

Uniquely for an RTK, RET does not interact with its activating ligands directly. Instead, its 

ligand interaction is dependent on prior GFL binding by a coreceptor of the GFR family, 

GFRα1-4. GFRs are cell surface molecules and usually anchored in the cell membrane by a 

glycosylphosphatidylinositol (GPI)-anchor, but do also exist in a soluble form (see below). 

Each GFL has a specific high-affinity receptor. Generally speaking, GDNF interacts with 

GFRα1, NRTN with GFRα2, ARTN with GFRα3 and PSPN with GFRα4, although some in 
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vitro studies describe crosstalk and suggest that GFRα1 also can be activated by NRTN and 

ARTN and GFRα2 by GDNF (Airaksinen et al., 1999; Baloh et al., 2000). Based on their 

protein structure the GFLs are members of the TGFβ superfamily and have a homology of 

approximately 40% to each other (Kotzbauer et al., 1996; Baloh et al., 1998; Milbrandt et al., 

1998). 

The formation of the ternary RET:GFR:GFL complex occurs in a 2:2:2 stoichiometrical 

fashion. A model of this complex suggests an interaction where a GDNF dimer is bound by 

two GFRα1 molecules, and this complex is embraced and enveloped by two RET receptors. 

The RETECD interacts with the ligand-coreceptor complex at four distinct contact sites, three 

with GFRα1 and the fourth one as a shared GDNF-GFRα1 binding site. This interaction is 

calcium-dependent (Goodman et al., 2014). 

Commonly the coreceptors are expressed as membrane proteins in the same cell as RET and 

associate with and activate it in cis, but also soluble forms of GFRs are able to activate RET in 

cis or trans and have been described both in vitro and in vivo. Additionally, also membrane-

bound GFRs on neighbouring cells can bind GFLs and activate RET in trans. Soluble GFR 

variants can be generated by cleavage of the GPI anchor by a phospholipase or protease or by 

alternative splicing (Worley et al., 2000; Lindahl et al., 2001; Paratcha et al., 2001; Arighi et 

al., 2005; Fleming et al., 2015). In fact, a recent report indicated that the concerted action of 

cis-signalling via GFRα2 and trans-signalling of GFRα1 control the survival and the growth of 

central projections in rapidly adapting mechanoreceptors (Fleming et al., 2015). Trans 

signalling has also been implied in tissue invasion by RET+ cancer cells (He et al., 2014). 

1.2.3 Expression and functionality of the RET isoforms 

As described above, Ret is expressed in three different isoforms, generated by alternative 

splicing. Both RET9 and RET51 are conserved in all vertebrates, but RET43 has to date only 

been described in primates and only at low levels, and is still uncharacterized (Carter et al., 

2001). 

Although RET9 and RET51 are coexpressed in most RET+ cells and their amino acid 

sequence is homologous to more than 95%, they have partially different dynamics in 

maturation and trafficking. Richardson et al. found that RET51 is readily matured, while 

RET9 is found to a higher degree in the immature state. Once matured and localized at the 

cell surface though, RET51 seems to be internalized quicker. Interestingly, this is partly 
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counteracted by a recycling of RET51 receptors that is not seen for RET9 (Richardson et al., 

2012). 

In human kidney development, RET9 and RET51 underlie temporal control and seem to be 

important at different points during development. RET9 is the major isoform expressed 

during early stages of embryonic kidney development (week 7.5 of gestation), whereas RET51 

is only weakly expressed at this time, but is increased sevenfold until week 9 (Ivanchuk et al., 

1998).  

In addition to differences in the time of expression and protein dynamics, some functional 

differences might also arise from the additional tyrosine Y1096 of RET51. This residue 

constitutes a binding site for the docking protein GRB2 that can serve as an adaptor for both 

the MAPK and PI3K pathways. Analyses of genetically modified mice carrying either the 

RET9 or RET51 isoform have shown that RET9 is sufficient for normal development. 

However, while one study presented evidence that RET51 does not support nephrogenesis 

and enteric nervous system (ENS) development to the same extent as RET9 (de Graaff et al., 

2001), another study showed that both isoforms appear to support development equally well 

as wild type receptors. Differences between the isoforms became apparent though in the latter 

study once loss-of-function mutations were induced, and animals on a monoisoformic Ret51/51 

background seemed to show weaker phenotypes upon tyrosine mutation than on the Ret9/9 

background (Jain et al., 2006). Although at low penetrance, Ret9/9 mice show abnormalities in 

sphenopalatine ganglia development, and mutations of Y981, Y1015 or Y1062 further 

increase this phenotype, while RET51 is capable of supporting normal ganglia development 

even in the presence of mutations (Jain et al., 2010). 

These results suggest a compensatory role of Y1096 in the RET51 isoform. 

1.2.4 RET phosphotyrosines and associated signalling proteins 

The intracellular domain of RET contains 18 tyrosine residues, at least 14 of which can be 

phosphorylated upon receptor activation. To date, only eight of them have been shown to be 

functional binding sites though (Liu et al., 1996; Kawamoto et al., 2004). 

Y687 is a recently discovered binding site for SHP2 and thereby activates the PI3K pathway. A 

Y687F mutation diminishes GDNF induced neurite outgrowth and survival in primary 

superior cervical ganglion (SCG) neurons in vitro (Perrinjaquet et al., 2010). 
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Both Y752 and Y928 are bound by and activate STAT3 (Schuringa et al., 2001), but no cell 

biological role has been reported in vitro or in vivo yet. 

GRB7 and 10 bind to RET Y905 and stimulate MAPK signalling. An inactivating Y905F 

mutation greatly reduces the transforming activity of RET-MEN2A in vitro in transfected 

NIH 3T3 cells (Pandey et al., 1995; 1996; Kato et al., 2002). 

 
Fig. 1 The RET interaction sites, associated signalling partners and downstream pathways. 

Y981 is bound by SRC that links RET to PI3K signalling. A Y981F mutation leads to impaired 

survival of primary cerebellar granule neurons in vitro, and SRC signalling from this residue 

is required to support full GDNF-mediated migration, while it is not sufficient to support 

migration on its own in the absence of Y1062 (Encinas et al., 2004; Lundgren et al., 2008b). 

While animals carrying this mutation on a RET51 background do not show any apparent 

phenotype, some animals with a RET9(Y981F) variant lack sphenopalatine ganglia, show 

partial intestinal aganglionosis or colonic hypogonglionosis or faulty ureter development 

(Encinas et al., 2004; Jain et al., 2010). 

Y1015 is a binding site for PLCγ and is crucial for the transforming potential of RET/PTC2 

both in vitro and in vivo (Borrello et al., 1996). It also has been shown to regulate the 
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migration of neocortical neurons through Ca2+ signalling (Lundgren et al., 2012). Both 

RET51(Y1015F) and RET9(Y1015F) mice show major developmental anomalies, including 

defects in kidney, ureter and gonad development and partial colonic aganglionosis. Some 

RET9(Y1015F) mice additionally lack sphenopalatine ganglia (Jain et al., 2010). 

The presence of Y1062 is crucial for normal organ development of the ENS and the kidneys. 

A Y1062F mutation in animals expressing both RET9 and RET51 results in a significant loss 

of enteric innervation and renal hypoplasia due to reduced ureteric bud (UB) branching, and 

these mice are not viable (Jijiwa et al., 2004). Mice expressing monoisoformic RET9 with the 

Y1062F mutation show a phenotype reminiscent of full Ret knockout mice, with total enteric 

aganglionosis and kidney aplasia. The effect in RET51(Y1062F) mice is less pronounced, with 

colonic aganglionosis but normal kidney development (Jain et al., 2010). Y1062 was also 

shown to convey neuronal survival signals in vitro and in vivo (Coulpier et al., 2002; Encinas 

et al., 2008). 

Y1062 is part of an NXXY PTB motif and has been described to be a multidocking site for the 

PTB adaptor proteins of the DOK, FRS2 and SHC families as well as IRS1/2. It is important to 

note that binding to multidocking sites creates a competitive situation between potential 

binding proteins, as only one docking protein can bind at a time (Melillo et al., 2001a; Jain et 

al., 2006).  

The DOK isoforms DOK1-6 all have been reported to bind to and signal from RET Y1062, 

and regulate MAPK signalling (see 1.2.5.1) (Grimm et al., 2001; Murakami et al., 2002; 

Crowder et al., 2004; Kurotsuchi et al., 2010).  

FRS2 was shown to immunoprecipitate with RET and vice versa, and to activate MAPK 

signalling upon GDNF treatment or in constitutively active variants of RET (see 1.2.5.2) 

(Kurokawa et al., 2001; Melillo et al., 2001b). 

Several proteins of the SHC family have been shown to bind to and get activated by RET. 

Association with the activated RET receptor activates the MAPK and PI3K pathways, 

supporting amongst others cell survival and proliferation (see 1.2.5.3) (Asai et al., 1996; 

Arighi et al., 1997; Pelicci et al., 2002; Gustin et al., 2007). 

Two studies suggested activation and phosphorylation of IRS1/2 by RET in response to RET 

activation. Their results were conflicting though, with one study presenting IRS1 

phosphorylation and a weak interaction of IRS1 with constitutively active RET at Y1062, 
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while the other one explicitly reported IRS1 not to be phosphorylated, and only mentioned 

phosphorylation, but not direct interaction, between RET and IRS2 (Hennige et al., 2000; 

Melillo et al., 2001a). As the cells were cultured in serum containing media in both studies 

and a later study described increased insulin sensitivity in cells stably expressing RET/PTC3 

(Miyagi et al., 2004) the increased phosphorylation of IRS1/2 might be a side effect of 

signalling through the IR and not a direct effect of RET signalling. To date no cell biological 

process has been coupled to IRS1/2 binding to RET, and both proliferation and neurite 

outgrowth are independent of IRS1/2 (Gustin et al., 2007). 

The region C-terminal of Y1062 of RET9 has additionally been reported as phosphorylation-

independent binding site for the LIM2 domain protein Enigma and the PDZ protein 

SHANK3 in vitro, while RET51 is not bound by either of them (Durick et al., 1996; Borrello 

et al., 2002; Schuetz et al., 2004). 

In addition to these tyrosine residues that are shared by all isoforms, RET51 contains an 

additional tyrosine at position 1096 that is bound by GRB2 through its SH2 domain (Liu et 

al., 1996; Lorenzo et al., 1997). Tyrosine replacement by phenylalanine at this position does 

not result in any apparent phenotype in vitro in a neuronal cell scattering assay 

(Degl'Innocenti et al., 2004). 

In summary, based on the currently available data the tyrosines of highest importance in 

physiological RET signalling seem to be Y1015 and Y1062. Y1015 is the only PLCγ binding 

site in the RET receptor and is of vital importance not only for the development of the 

genitourinary system, but also for neocortical neuron migration, and with lower penetrance 

for gastrointestinal development (Jain et al., 2010; Lundgren et al., 2012). The multidocking 

site Y1062 controls both the MAPK and PI3K pathways and is of uttermost importance 

especially, but not only, in the RET9 isoform, as a Y1062F mutation results in a severe 

developmental failure in multiple organs with loss of enteric neurons and kidney 

malformation, which is similar to full Ret, Gdnf or Gfrα1 knockout animals (Airaksinen and 

Saarma, 2002; Jain et al., 2006; 2010). 

1.2.5 RET PTB adaptor proteins 

1.2.5.1 DOK 

The downstream of kinase (DOK) family is made up of seven members with different 

expression patterns and functional characteristics. All family members share an N-terminal 



 

 13 

pleckstrin homology (PH) domain, a PTB domain and a C-terminal SH2 domain target motif 

(Okada et al., 2006). 

Sequence analysis suggests a subdivision of the family into subgroups, with DOK1-3 and 

DOK4-7 forming separate subfamilies. DOK1-3 are mostly expressed in the haematopoietic 

lineage (Di Cristofano et al., 1998; Cong et al., 1999; Yamanashi et al., 2000). DOK4 is 

widely expressed in the organism, amongst others in the developing nervous system and 

endothelial-derived tissues like the intestine, kidney and the lungs. DOK5 is mostly found in 

the brain, while DOK6 is predominantly localized in the DRG and cortical neurons, but also 

the UB and the testes (Grimm et al., 2001; Crowder et al., 2004). Despite convincing in situ 

data by Crowder et al., Dok6 expression could not be detected by single cell RNA sequencing 

of adult DRG neurons (Usoskin et al., 2014). Interestingly, DOK4 and DOK5 had first been 

identified as IRS-5 and IRS-6 with a suggested role as substrates of the IR, but were later 

found to be only weak binders (Cai et al., 2003; Versteyhe et al., 2010). 

In situ hybridization showed that DOK4-6 are coexpressed with RET in the ventral spinal 

cord, the DRG and cells of the UB. Both DOK4, 5 and 6 promote RET-dependent neurite 

outgrowth in cell lines (Grimm et al., 2001; Crowder et al., 2004), and in primary cortical 

tissue in case of DOK6 (Li et al., 2010). Considering that RET has been reported to promote 

and be essential for axonal growth in DRG neurons and in the sympathetic system in vivo and 

that DOK proteins support neurite outgrowth in vitro they may likely be involved in this 

mechanism also in vivo. 

Dok4 is most abundantly expressed in the kidney and liver and was found to be increased in 

clear cell renal cell carcinoma (Al-Sarraf et al., 2007), while no physiological role of this 

protein in the developing or adult kidney has been described yet. 

DOK1-3 have been described as negative regulators of MAPK/ERK signalling through 

binding of RasGDP and inhibition of RAS. Murakami et al. showed that while repressing 

MAPK/ERK, DOK1 activates JNK and c-Jun upon GDNF stimulation of RET (Cong et al., 

1999; Suzu et al., 2000; Yamanashi et al., 2000; Murakami et al., 2002). DOK4-6 on the other 

hand are activators of MAPK/ERK (Grimm et al., 2001; Crowder et al., 2004). 

Overexpression of a RET variant preferentially binding DOK at Y1062 results in strong 

MAPK activation and induces microspike formation and receptor redistribution in SK-N-

MC cells, which have been shown to express both DOK4 and DOK6 natively (Stenqvist et al., 

2008; Kurotsuchi et al., 2010). 
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1.2.5.2 FRS2 

The FRS2 family was first described as signalling factors phosphorylated upon NGF and FGF 

stimulation and consists of two members, FRS2α (also known as FRS2) and FRS2β (FRS3) 

(Rabin et al., 1993; Kouhara et al., 1997; Ong et al., 2000). In this thesis, FRS2 is used 

synonymously with FRS2α. 

FRS2 contains an N-terminal myristoylation sequence, resulting in a localization in the 

plasma membrane (Schlessinger, 2000). Activation of FRS2 depends on RTK binding 

through its PTB domain. As described above though, FRS2 was also found to bind 

constitutively to the tyrosine-free juxtamembrane domain of the FGFR, independently of the 

NXXpY motif usually bound by PTB proteins (Xu et al., 1998; Ong et al., 2000). In addition 

to the PTB domain, FRS2 contains SH2 and SHP2 binding sites that serve as docking sites for 

e.g. the downstream adaptor GRB2, linking FRS2 to the MAPK and PI3K pathways (Kouhara 

et al., 1997; Hadari et al., 1998). In the case of RET, FRS2 seems to activate only the MAPK 

pathway though (Kurokawa et al., 2001). While FRS2 additionally interacts with GAB1 upon 

FGFR activation, this interaction seems to be amiss in the RET:FRS2 complex, suggesting a 

mechanism why FRS2 activation through RET does not result in PI3K activation (Kurokawa 

et al., 2001; Ong et al., 2001; Melillo et al., 2001b).  

FRS2 is expressed from E5.5 and an almost ubiquitous expression is maintained throughout 

development. Amongst others, Frs2 expression was detected in the DRG, kidneys and the gut 

(Gotoh et al., 2005; Gotoh, 2008). Frs2-/- animals suffer from defects in anterior-posterior axis 

formation and die between E7-E8 (Gotoh et al., 2005). Conditional deletion of FRS2 in the 

UB results in renal hypoplasia, while general branching architecture and mesenchymal 

stromal development are normal. Interestingly, Ret expression in bud cells was reduced in 

these animals (Sims-Lucas et al., 2009). In addition, FRS2 is crucial for the maintenance of 

nephron progenitors and conditional knockout animals develop renal cysts (Di Giovanni et 

al., 2015). Although showing a similar phenotype as Ret-/- mice, the role of FRS2 in 

nephrogenesis might be independent of RET, as FRS2 has also been shown to be an essential 

part of FGFR signalling in kidneys (Sims-Lucas et al., 2012). 

RET is important for cell migration, and FRS2 is a regulator of RET-dependent migration in a 

neuroblastoma cell line (Lundgren et al., 2008b). Coexpression of FRS2 with RET/PTC3 leads 

to increased proliferation in NIH 3T3 fibroblasts (Melillo et al., 2001b), while another group 
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did not find FRS2 to be essential for RET-dependent proliferation in MG87 fibroblasts 

(Gustin et al., 2007). 

In the sympathetic system, a loss-of-function mutation of FRS2 at its SHP2 binding site 

results in a reduced cranio-ventral migration of the superior cervical ganglion cells and a lack 

of the carotid body (Kameda et al., 2008). Although suggested as an FGFR-dependent event, 

a link to RET signalling is also possible, since Ret-/- mice display similar deficits in migration 

and axonal projection of sympathetic neurons (Enomoto et al., 2001). No FRS2 phenotype 

has been described in the ENS yet. 

1.2.5.3 SHC 

The SHC family consists of four members, SHCA, B, C and D, named in sequence of their 

discovery, with different splicing isoforms for each member. While SHCA, B and C are well 

described, the function of the newest member SHCD is still mostly unknown. SHC proteins 

are widely expressed throughout most cells of the organism and are recruited to several 

tyrosine kinases, including, but not restricted to, EGF, FGF, TRKB and RET (Wills and Jones, 

2012). 

SHC proteins contain both an N-terminal PTB and a C-terminal SH2 domain, connected by a 

linking CH1 domain, and can interact with growth factor receptors through each of them, 

given the presence of suitable binding sites (Gustafson et al., 1995; Migliaccio et al., 1997). 

Upon binding and phosphorylation, SHC serves as a docking protein for GRB2 (van der Geer 

et al., 1996), linking it to ERK/MAPK through SOS or to PI3K via Gab1/2 (Lowenstein et al., 

1992; Pelicci et al., 2002; Nishida and Hirano, 2003). The SHC proteins differ to some extent 

in their activation kinetics: While SHCA activation results in ERK phosphorylation within 

five minutes, SHCC activation does not result in phosphorylation before 30min of 

stimulation (Pelicci et al., 2002). 

Two of the three isoforms of SHCA (p52, p46) are based upon different start codons within 

the same transcript, while the longest isoform (p66) is generated by alternative splicing 

(Migliaccio et al., 1997). Despite their similar structure, p66 is standing out in terms of 

function. It is involved in the oxidative stress response, and animals devoid of this isoform 

show increased ageing and reduced sensitivity to oxidative stress, while knockouts of other 

SHCA isoforms do not show this phenotype (Migliaccio et al., 1999). 
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Both SHCB and SHCC are expressed in the DRG of E19 rat embryos, while SHCA is absent 

(Nakamura et al., 1998). SHCB is expressed in most DRG neurons at E13.5 as well as in 

adulthood. SHCC on the other hand shows a more restricted expression and is mostly found 

in large-diameter neurons (Sakai et al., 2000; Usoskin et al., 2014). Consequently, a loss of 

SHCB results in a loss of more than 50% of IB4+ and TRKA+ neurons that is also reflected in 

reduced cutaneous innervation, while the neuronal number in Shcc-/- mice does not show 

such an effect. SHCB and SHCC expression are also found in sympathetic cells of the superior 

cervical ganglia (SCG) and a double-knockout results in a loss of 33% of SCG neurons 

between E15 and P0, which partially resembles the phenotype of Trka-/- or Ret-/- animals. In 

contrast, no phenotype was found in the individual knockouts (Sakai et al., 2000). In the 

neuronal PC12 cell line, SHCC links RET to the PI3K/AKT pathway and thereby inhibits 

apoptosis (Pelicci et al., 2002). 

SHCC expression is found in enteric glia cells, but not in enteric neurons (Villanacci et al., 

2008), and Shc knockdown by siRNA does not have an effect on neuronal numbers in the 

ENS (Jain et al., 2010). In the kidney, the p46 and p52 isoforms of SHCA activate 

ERK/MAPK signalling and induce pro-survival signals. Under severe oxidative stress though 

the p66 isoform can disrupt ERK signalling, resulting in a lack of survival signals and in 

apoptosis of renal proximal tubule cells (Arany et al., 2008). 

1.2.6 Role of RET and signalling partners in development 

1.2.6.1 RET in the sensory nervous system 

Cell lineages of the sensory nervous system 

The dorsal root ganglia (DRG) are positioned bilaterally to the spinal cord and harbour the 

cell bodies of the sensory nervous system. The sensory neurons present the link for sensory 

information from the periphery to the central nervous system. The neurons of the mature 

sensory system can be classified by their respective sensory modality into low-threshold 

mechanoreceptors (LTMR), proprioceptors and nociceptors. Based on the full molecular 

profile of sensory neurons established by RNA sequencing of single cells, the sensory neurons 

can be subdivided into 11 groups: three types of LTMRs, two classes of proprioceptors and six 

classes of nociceptive, thermosensitive, itch sensitive and mechanosensitive neurons (Usoskin 

et al., 2014). 
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Generally speaking, LTMRs and proprioceptors are myelinated, large-diameter cells, 

innervate subcutaneous end organs and relay information about inoccuous vibration, 

pressure and light touch, while proprioceptive neurons target muscle spindles and Golgi 

tendon organs (Marmigère and Ernfors, 2007). 

The neurons of the thermo-nociceptive lineage on the other hand constitute small-diameter, 

unmyelinated neurons. Functionally, nociceptors are the receptors and transmitters of 

noxious signals of different modi and are stimulated by noxious heat, cold, chemical or 

mechanical stimuli. While the different modalities are detected by specific receptors, the 

nociceptors often express several different receptors and are polymodal, i.e. one and the same 

cell conveys information about more than one modus to the central nervous system 

(Basbaum et al., 2009). 

The thermo-nociceptive lineage can be grouped into six subgroups, namely the non-

peptidergic (NP) groups 1-3, peptidergic (PEP) groups 1 and 2, and tyrosine hydroxylase-

containing neurons (TH) (Usoskin et al., 2014). While the PEP and NP classes partially 

overlap in function, one can roughly summarize their main modalities in that NP neurons 

transmit itch and neuropathic pain sensations, while PEP neurons convey inflammatory pain 

and thermal information and the TH neurons pleasant touch. TRPM8, a cold receptor, is for 

example exclusively expressed in PEP1, whereas the itch-receptor MRGA3 is restricted to 

NP2. Other molecules like NAV1.8, which has been linked to mechanical pain, are found in 

neurons of all NP, PEP and TH classes (Liu and Ma, 2011; Lallemend and Ernfors, 2012; 

Usoskin et al., 2014). 

Sensory neuron specification 

During the time of neural tube closure, neural crest cells (NCC) undergo epithelial to 

mesenchymal transition and delaminate from the neural tube. NCC migrating along a ventral 

pathway form the organs of the sensory and autonomic nervous systems. The NCC forming 

the sensory nervous system commit to their neuronal phenotype around E9.5-E10.5 in mice 

during or after migration and coalesce into ganglia (Marmigère and Ernfors, 2007). 

The first migratory NCC to arrive and exit the cell cycle differentiate into large-diameter 

myelinated LTMR and proprioceptors of the NF classes, while later differentiating cells form 

the family of small-diameter unmyelinated nociceptors. Under the control of different 

neurotrophic factors and transcription factors the sensory neurons undergo lineage 
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specification in a hierarchical fashion and finally acquire the phenotypes of the 11 different 

sensory subgroups of the adult DRG (Lallemend and Ernfors, 2012; Usoskin et al., 2014).  

Expression of Ret can first be seen in the DRG at E10.5-E11.5 (Kramer et al., 2006b; Luo et 

al., 2009) in a small group of early-born large diameter cells (eRet). They innervate cutaneous 

sensory structures like longitudinal lanceolate endings, Pacinian corpuscles and Meissner 

corpuscles. Alongside with RET, these cells are also positive for the transcription factor v-maf 

avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) and GFRα2 during 

embryonic and early postnatal stages (Bourane et al., 2009; Luo et al., 2009; Lecoin et al., 

2010). Interestingly, Gfrα2 expression could not be detected in this population in single-cell 

RNA sequencing of adult DRG neurons, while GFRα1 was found instead (Usoskin et al., 

2014). 

At E15, another set of RET+ cells emerges (reviewed in Marmigère and Ernfors, 2007; 

Lallemend and Ernfors, 2012), this time belonging to the population of unmyelinated small- 

and medium-diameter neurons that constitute the nociceptors (lRet). Highest Ret expression 

is found in cells of the NP and TH classes, alongside with GFRα2 or GFRα3, and in NF classes 

together with GFRα1. Surprisingly a recent report also described GFRα3 expression in large-

diameter neurons, which is in contrast to the above mentioned single cell RNA sequencing 

data as well as several other reports (Naveilhan et al., 1998; Orozco et al., 2001; Wong et al., 

2015). 

As Ret-/- mice die within few hours after birth with severe defects in several organs 

(Schuchardt et al., 1994), functional analysis of RET in the sensory system has long been very 

limited, but in recent years several groups have published analyses on conditional Ret 

knockouts, where Ret was deleted under the control of a cell type specific Cre recombinase. 

Upon deletion of Ret in all neural crest cells, expression of the eRet population marker Mafa 

and the total number of LTMR are greatly reduced, together with a reduced innervation of 

their target structures like the Paccinian corpuscles. The importance of RET for LTMR is 

further strengthened by the finding that GDNF and NRTN support the survival of MAFA+ 

DRG neurons in vitro (Bourane et al., 2009; Luo et al., 2009).  

Deletion of Ret under the control of ThCre or Nav1.8Cre removes RET from the small- and 

medium-diameter cells of the lRet population. Analyses of these mice found several changed 

behavioural characteristics, including increased cold and mechanical sensitivity. Molecular 
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analyses showed that RET plays a critical role in the regulation of the expression of several ion 

channels and receptors of the NAV, MRG and TRP families (Golden et al., 2010; Franck et 

al., 2011). While RET does not seem to be required for cell survival in the DRG, several 

studies found it to be involved in the regulation of the soma size of DRG neurons (Luo et al., 

2007; Golden et al., 2010). This phenotype likely involves signalling through NRTN/GFRα2, 

as it was also found in animals lacking the GFRα2 receptor (Lindfors et al., 2006). 

1.2.6.2 Development of the ENS 

The ENS is the most complex part of the peripheral and autonomous nervous system, with 

cell numbers rivalling those in the spinal cord. It is organized into ganglia of the myenteric 

and submucosal plexi. While it also gets input from the sympathetic and parasympathetic 

nervous system, it can work completely autonomously and control gut motility, secretion and 

resorption without external input (Furness, 2006) . 

Development of the ENS starts around E8.5 with cells delaminating from the vagal neural 

tube. These cells reach the foregut at E9-E9.5 and are then called enteric neural crest cells 

(ENCC) (Durbec et al., 1996; Anderson et al., 2006). During the following days the ENCC 

undergo a rostro-caudal migration resulting in the colonization of the entire intestine by E15 

(Druckenbrod and Epstein, 2005). During this migration along the intestine, GDNF 

functions as a chemoattractant with highest expression levels in the foregut and caecum 

region (Young et al., 2001; Natarajan et al., 2002; Mwizerwa et al., 2011; Nishiyama et al., 

2012). In addition to the cells originating from the vagal neural tube, another population 

migrates from the sacral neural tube at E9-E9.5, first forming the extrinsic pelvic ganglia from 

where they migrate into the hindgut at later stages of intestinal colonization (Serbedzija et al., 

1991; Burns and Douarin, 1998).  

Migrating neural crest cells upregulate Ret expression en route along the dorsal aorta around 

E8.5-E9 (Durbec et al., 1996; Anderson et al., 2006) and maintain Ret expression in the 

neuronal population until adulthood, while cells differentiating into glia downregulate Ret 

upon completed migration (Pachnis et al., 1993; Young et al., 2003). 

ENS development relies on the appropriate establishment of cell number, proliferation, and 

survival as well as migration of the precursor cells. RET signalling has been linked to all of 

these processes. In the early phase of ENS development, RET activity is crucial for survival of 

ENCC, and apoptosis is increased in the absence of RET (Taraviras et al., 1999). GDNF 
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signalling through RET is a regulatory factor of ENCC proliferation, and Gdnf+/- mice have a 

greatly reduced number of precursor cells (Heuckeroth et al., 1998; Taraviras et al., 1999; 

Gianino, 2003). Y1062 plays a central role in this process, as mice lacking this residue develop 

enteric aganglionosis (Jijiwa et al., 2004). When this mutation is introduced on a 

monoisoformic background, animals expressing only RET9 show a stronger phenotype with 

total aganglionosis, whereas only the colon is affected in RET51 expressing animals (Jain et 

al., 2010). Barlow et al. showed that a minimum number of cells is required for complete 

formation of the ENS. While expression of monoisoformic RET9 at 50% of normal RET levels 

still enabled complete ENS colonization, a reduction to 30% failed to do so (Barlow et al., 

2008). These phenotypes resemble human Hirschsprung’s disease (HSCR). 50% of familial 

and 30% of sporadic HSCR cases carry coding sequence mutations in RET, both in the extra- 

and intracellular domains (Runeberg-Roos and Saarma, 2007; Wallace and Anderson, 2011). 

As in the sensory system, NRTN controls cell size of enteric neurons (Gianino, 2003). In 

addition, NRTN has been suggested to play a role in axon guidance of enteric neurons, as 

Nrtn-/- and Gfrα2-/- display a reduced density of cholinergic neurons projecting to the circular 

muscle layer (Heuckeroth et al., 1999; Rossi et al., 1999). 

All in all, GDNF signalling through RET is of great importance for ENS development, and in 

their absence, no ENS is formed. Loss-of-function mutations that disrupt signalling through 

Y1062 result in severe enteric aganglionosis. 

1.2.6.3 Development of the sympathetic nervous system 

The sympathetic nervous system controls homeostasis by regulating internal organ functions, 

including vasoconstriction, salivation and gut motility. It consists of numerous ganglia 

throughout the body. Best-described are the superior cervical ganglion (SCG), the stellate 

ganglion and the paravertebral ganglia, which are organized in two chain-like structures 

located ventrally and bilaterally to the spinal cord.  

Sympathetic neurons either belong to the cholinergic or the predominant noradrenergic 

lineage. Noradrenergic sympathetic neurons innervate most tissues and organs, while 

cholinergic neurons represent a small subset of neurons that innervate sweat glands and the 

periosteum. The innervation of sweat glands by cholinergic neurons has a unique role in the 

control of thermoregulation (Asmus et al., 2000). 



 

 21 

Like the DRG and the ENS, also the SNS is of neural crest origin. SNS development starts 

with a ventral migration of neural crest cells, which coalesce in the vicinity of the dorsal aorta 

at E9-E10 and form the primary sympathetic ganglia. BMP factors released by the dorsal aorta 

have been proposed as regulating factors of sympathetic specification and they upregulate the 

transcriptional regulators Mash1, Hand2, Gata2/3 and Phox2a/2b that establish a 

transcriptional network which defines the sympathetic fate (Schneider et al., 1999; Goridis 

and Rohrer, 2002; Young et al., 2011). MASH1 and PHOX2B control together the expression 

of Phox2a (Goridis and Rohrer, 2002), which in turn is known to induce expression of 

neuronal markers such as Th and Dbh. HAND2 further enhances their expression (Xu et al., 

2003). 

Expression of the transcription factor Tlx3 has been reported as early as E10.5, with 82% of 

PHOX2B+ neurons also being positive for TLX3 and it further increases until E12.5, when 

95% of PHOX2B+ cells are TLX3+ (Huang et al., 2013). At this point, most, if not all, 

sympathetic cells express both noradrenergic and cholinergic lineage markers, such as 

tyrosine hydroxylase (Th), vesicular monoamine transporter 2 (Vmat2) and dopamine β-

hydroxylase (Dbh) or choline acetyltransferase (Chat), vesicular acetylcholine transporter 

(Vacht) and Ret, respectively (Apostolova and Dechant, 2009; Furlan et al., 2013). 

From E13.5 onwards the transcription factor Hmx1 is gradually upregulated and in parallel 

Trkc is extinguished in TLX3+ cells. A concerted action of the pro-noradrenergic HMX1 and 

the pro-cholinergic RET leads to a gradual segregation of the noradrenergic and cholinergic 

lineages, until only a small population of 10% of the paravertebral ganglion neurons 

maintains a cholinergic identity with expression of Chat and Vacht while the remaining 

sympathetic neurons obtain a noradrenergic phenotype (Furlan et al., 2013). 

RET activity is crucial for cholinergic specification of sympathetic neurons. Ret-/- animals 

show a drastic reduction of cholinergic marker expression at E15.5, while they upregulate 

Hmx1 and Trka instead (Burau et al., 2004; Furlan et al., 2013). Throughout sympathetic 

development, Tlx3 is almost always coexpressed with Ret, however, TLX3 and RET have 

partially different functions during development of the cholinergic sympathetic neurons. 

While the number of VIP+ and SOM+ cells is greatly reduced in Tlx3-/- mice at both E12.5 and 

E18.5, Ret-/- have normal levels of VIP and SOM at E12.5, but show a reduction at E15.5 and 

E18.5 (Furlan et al., 2013; Huang et al., 2013). Thus, TLX3 seems to initiate marker 

expression while RET is critical for its maintenance. Both TLX3 and RET are dispensable for 
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normal expression of Vacht at E12.5 and E13, but are required for its expression at E15.5 and 

E18.5, indicating that neither of them is required for the induction of functional cholinergic 

markers, but for their maintenance in face of the repressive activity of HMX1 (Burau et al., 

2004; Furlan et al., 2013; Huang et al., 2013). 

Cholinergic sympathetic neurons of neonatal mice express Gfrα2 and expression of its ligand 

Nrtn can be detected in footpad sweat glands and the periosteum . Interestingly, Gfrα2-/- mice 

have a normal density of sympathetic axons innervating sweat glands at P4, but have lost 50-

70% of this innervation after three weeks and at adult stages, and innervation of the 

periosteum is completely absent. This supports the hypothesis of a target-dependent role of 

RET signalling for the maintenance of cholinergic target tissue innervation. Additionally, 

GFRα2 is a regulator of soma size in sympathetic neurons (Hiltunen and Airaksinen, 2004). 

The origin of at least part of RET-mediated survival signalling could be narrowed down to 

Y1062, which has been shown to be important for sympathetic neuron survival in vitro, 

through activation of IKK via B-Raf (Encinas et al., 2008). 

To summarize, RET is a central regulator of cholinergic lineage specification and is required 

for the maintenance of the expression of different cholinergic markers as well as the 

suppression of a noradrenergic phenotype. 

1.2.6.4 RET in nephrogenesis 

Ret and Gdnf are expressed in the kidney anlagen as early as E8.5 (Jain, 2009; Coskun et al., 

2011). By E10.5, RET is found in distal Wolffian duct cells, while Gdnf is expressed in the 

metanephric mesenchyme (MM) to stimulate outgrowth of the UB into the MM through 

activation of the RET-GFRα1 axis (Murakami et al., 2002; Chi et al., 2009). During ongoing 

branching, RET and GFRα1 get downregulated at the UB stalk and become limited to the 

branching bud tip cells, while GDNF is mostly found in the undifferentiated peripheral 

mesenchyme. At later stages of kidney development, RET and GFRα1 are mostly found in the 

nephrogenic zone. In adult mice, both RET and GFRα1 are almost undetectable in the kidney, 

except for in some collecting ducts and proximal tubules (Kouhara et al., 1997; Ong et al., 

2000, reviewed in Jain, 2009; Davis et al., 2013). 

Knock-out animals for Ret, Gdnf or Gfrα1 die early perinatally with bilateral renal agenesis or 

aplasia (Schuchardt et al., 1994; Pichel et al., 1996; Enomoto et al., 1998). Interestingly, while 

NRTN is expressed in UB cells at E14 and into adulthood, mice lacking NRTN have normal 



 

 23 

renal morphology and function (Heuckeroth et al., 1999). While there is consensus that 

RET9 alone supports normal kidney development, results on RET51 are inconclusive and 

system-dependent. While one study showed renal agenesis in monoisoformic RET51 mice, 

another one described full competence of RET51 in kidney development. The latter one also 

found that Y1062 of RET51 is not essential for nephrogenesis, but a Y1015F mutation results 

in uni- or bilateral dysgenesis in both isoforms (de Graaff et al., 2001; Jain et al., 2006). 

Summarizing, RET activity controls and is essential for UB outgrowth and branching and is 

required for normal kidney development. The central residues involved in this process are 

Y1015 and Y1062. 

1.2.6.5 RET in the central nervous system 

The RET ligand GDNF was originally found as a factor supporting the survival of midbrain 

dopaminergic neurons in vitro (Lin et al., 1993). Ret is expressed together with Gfrα1 and 

Gdnf in the substantia nigra in embryonic and adult mice, with highest expression levels 

being detected at postnatal stages (Trupp et al., 1996). Surprisingly, mice lacking one of these 

factors do not show any phenotype in the nigrostriatal system at birth. However, it was shown 

that while the development and early postnatal maintenance of the nigrostriatal system are 

not affected, conditional Ret-/- mice show deficits in long-term neuronal survival, with a loss 

or degeneration of dopaminergic neurons of midbrain and striatum (Kramer et al., 2007). 

Not only loss of RET, but also of GDNF, results in impaired survival of catecholaminergic 

neurons (Pascual et al., 2008). Given these survival effects of GDNF signalling it is an 

attractive target for the development of treatments for Parkinson’s disease (PD), and clinical 

trials are ongoing (Patel and Gill, 2007; Patel et al., 2013). 

Also cells of the medial ganglionic eminence and the cortex express Gdnf and Gfrα1 and 

promote differentiation and migration of GABAergic neurons in vitro in dissociated primary 

cultures and slice cultures (Pozas and Ibáñez, 2005). Recently, Lundgren and coworkers 

presented that PLCγ signalling from RET via Y1015 regulates neuronal migration in the 

murine neocortex in vivo after in utero electroporation (Lundgren et al., 2012). 

Kramer et al. also showed that RET/GDNF signalling provides guidance cues for migrating 

motor neurons in vivo (Kramer et al., 2006a), and in cranial motor neurons the absence of 

RET results in maturation deficits (Baudet et al., 2008). 
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1.2.6.6 RET in the parasympathetic nervous system 

RET is also involved in the development of the parasympathetic nervous system. Most 

parasympathetic ganglia are derivatives of cranial and sacral neural crest cells (Le Douarin 

and Kalcheim, 1999). These Ret expressing parasympathetic precursor cells migrate first 

along a ventrolateral pathway and follow then a chemoattractive GDNF gradient to their final 

position. Mice lacking either RET, GFRα1 or GDNF have strongly reduced otic and 

sphenopalatine ganglia, while submandibular ganglia are less affected (Rossi et al., 2000). 

Once at their target destination, a switch of ligand dependency occurs and mature 

parasympathetic cells require NRTN/GFRα2 for survival and maintenance (Enomoto et al., 

2000). 

Both the otic, ciliary, sphenopalatine and submandibular ganglia express Ret and the 

coreceptors Gfrα1 and Gfrα2 (Enomoto et al., 2000; Rossi et al., 2000). Their target tissues on 

the other hand express GDNF and NRTN, which serve as chemoattractors for axonal growth 

and provide trophic support. While animals lacking GFRα2 or NRTN have normal cell 

numbers in the otic and sphenopalatine ganglia, the target innervation is reduced, along with 

a smaller neuron size (Heuckeroth et al., 1999; Rossi et al., 2000). In contrast to the otic and 

sphenopalatine ganglia, the submandibular and pancreatic neurons have fewer ganglion 

neurons in the absence of GFRα2 or NRTN, and this cell loss appears to be due to neuronal 

apoptosis (Heuckeroth et al., 1999; Lähteenmäki et al., 2007). 

1.2.6.7 RET signalling in spermatogonia 

After birth, Sertoli cells express GDNF, which controls the spermatogonial stem cell (SSC) 

fate through RET (Meng et al., 2000; Naughton, 2006). GDNF expression depends on follicle 

stimulating hormone (FSH), tumour necrosis factor alpha (TNFα), fibroblast growth factor 

(FGF) 2 as well as interleukine (IL)-1β (Tadokoro et al., 2002; Simon et al., 2007). Loss of 

RET seems to be without consequences for spermatogonia at prenatal stages and the testes of 

Ret-/-, Gfrα1-/- and Gdnf-/- mice appear normal at birth, but show greatly reduced SSC numbers 

by P7 (Naughton, 2006). This phenotype is recapitulated by mice with a Y1062F mutation in 

RET that show a strong atrophy of their testes. By P7, their RET+ spermatogonia in 

seminiferous tubes are decreased and practically absent at P21, indicating a central role of this 

tyrosine also in spermatogonia (Jijiwa et al., 2008). 
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1.2.6.8 RET in the immune and haematopoietic system 

Vargas-Leal et al. found RET to be expressed in circulating immune cells, such as B cells, T 

cells and monocytes, alongside with Nrtn and Gfrα2. While also Gfrα1 expression was found, 

it was more restricted than Gfrα2 (Vargas-Leal et al., 2005). RET signalling can stimulate 

monocytes to secrete pro-inflammatory cytokines and chemokines (Rusmini et al., 2013). 

Additionally, RET is important for the formation of Peyer’s patches (PP), which constitute 

the gut associated lymphatic tissue. Animals lacking RET or GFRα3 show severe defects in PP 

organogenesis, suggesting a central role of the RET/GFRα3/ARTN axis (Veiga-Fernandes et 

al., 2007). Also survival and proliferation of haematopoietic stem cells (HSC) is controlled by 

RET through stimulation of expression of the anti-apoptotic factors Bcl2 and Bcl2l1. HSC of 

Ret-/- embryos have a normal differentiation potential, but are more susceptible to apoptosis 

and therefore present with lower HSC numbers. They are also unable to reconstitute a 

functional hematopoietic system in fully irradiated mice (Fonseca-Pereira et al., 2014). 

1.2.7 RET in human pathologies 

Both loss- and gain-of-function mutations of RET have been associated with human 

pathologies. 

1.2.7.1 Loss-of-function RET mutations 

The probably best-known loss-of-function pathology of RET is Hirschsprung’s disease 

(HSCR), which is characterized by colonic aganglionosis of variable severity. This disease has 

a prevalence of 1:5000 and 50% of familial cases as well as 15-35% of sporadic cases have been 

shown to carry mutations in RET (Theocharatos and Kenny, 2008). 

Most mutations underlying HSCR seem to affect the extracellular domain, with some of them 

having been shown to result in misfolded proteins that are degraded prematurely. 

Interestingly, two mutations have been identified that are adjacent to Y1062 and lead to an 

L1061P amino acid replacement or a deletion of N1059. Both of them result in a modification 

of RET’s NXXpY PTB motif and impaired binding of SHC (Geneste et al., 1999). L1061P was 

also shown to be crucial for RET adaptor binding in PTB domain binding assays, where the 

mutation resulted in the loss of binding of DOK, FRS2 and SHC (Lundgren et al., 2006; 

Stenqvist et al., 2008). Hence, RET receptors that only display a loss of PTB binding, because 

Y1062 phosphorylation and the SH2 binding motif C-terminal of Y1062 are unaltered, result 
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in intestinal aganglionosis, illustrating the critical role of PTB domain proteins in 

development of the ENS also in humans. 

Unexpectedly, only very few polymorphisms in GFLs are associated with HSCR (Fernández 

et al., 2008; Ruiz-Ferrer et al., 2011; Wallace and Anderson, 2011). 

There is currently no consensus on the extent of the role of RET mutations as an underlying 

cause of congenital anomalies of the kidneys or lower urinary tract (CAKUT) associated 

disorders such as renal agenesis or hypodysplasia in humans. While a study by Skinner et al. 

described RET and/or GDNF mutations in 30% of foetuses that presented with renal aplasia 

or dysgenesis, other studies by Jeanpierre et al. and Chatterjeh et al. only found a relation of 

5-6% (Skinner et al., 2008; Jeanpierre et al., 2011; Chatterjee et al., 2012). 

1.2.7.2 Gain-of-function RET mutations 

Pathologies based on increased RET activity are caused by chromosomal rearrangements 

leading to RET fusion proteins, by increased RET expression or by activating point mutations 

in RET, rendering the protein constitutively active or independent of ligand binding. 

20-40% of patients that are suffering from papillary thyroid cancer (PTC) are carriers of 

chromosomal aberrations of the RET gene. In most cases, these RET/PTC rearrangements 

fuse the intracellular part of RET, without the trans- or juxtamembrane domain, with the N-

terminus of another protein, resulting in a constitutively active cytosolic RET variant. The 

most common rearrangements are a fusion of RET with either the cell-cycle regulator 

cytoskeleton protein coiled-coil containing domain 6 (CCDC6) or the androgen-responsive 

transcription regulator nuclear receptor co-activator 4 (NCOA4), both of which are              

co-localized with RET on chromosome 10 in humans. Together they account for >90% of all 

PTC-associated rearrangements (Nikiforov, 2002). 

Oncogenic point mutations in RET are associated with multiple endocrine neoplasia type 2 

(MEN2). All types of MEN2 are associated with medullary thyroid carcinoma (MTC), but 

they differ in the presence and nature of additional symptoms. Patients with familial 

medullary thyroid carcinoma (FMTC) only present with MTC. MEN2A patients suffer 

additionally from phaeochromocytoma and hyperparathyroidism, and MEN2B patients 

present with phaeochromocytoma as well as other developmental defects like skeletal 

malformations, marfanoid habitus, ganglioneuromas and myelinated corneal nerves. The 

best-described oncogenic point mutations of RET are C634R in MEN2A and M918T in 
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MEN2B, but many additional mutations have been described (Asai et al., 1995; Runeberg-

Roos and Saarma, 2007).   

MEN2A associated mutations such as C634R are mostly located in the cysteine-rich domain 

of the RETECD. These mutations lead to the breach of an intramolecular disulphide bond and 

result in misfolded proteins with an unpaired cysteine. This residue can then engage with 

neighbouring RET monomers to establish a covalent disulfide bond, leading to receptor auto-

phosphorylation even in absence of ligands (Asai et al., 1995; Santoro et al., 1995). FMTC 

patients have been found to carry mutations in the same sites as MEN2A patients, plus an 

additional set in the juxtamembrane domain. Due to the similarity between MEN2A and 

FMTC with respect to shared mutations it is speculated that they might represent different 

severities of the same disease, instead of two different disease classes (Kloos et al., 2009). 

Interestingly, some MEN2A/FMTC patients also show symptoms of HSCR, possibly due to 

premature degradation of misfolded proteins in some cell types, causing a lack of RET 

signalling (Ito et al., 1997; Chappuis-Flament et al., 1998; Kjaer et al., 2006). 

MEN2B associated mutations are mostly found in the kinase domain and result in 

overactivation of this domain. The MEN2B mutation M918T has been shown to increase 

ATP-binding and RET with this mutation is already active when still localized in the 

endoplasmatic reticulum (Gujral et al., 2006; Runeberg-Roos et al., 2007). Salvatore et al. 

found an increased phosphorylation of Y1062 and enhanced SHC recruitment of RET-

MEN2B in vitro compared to the MEN2A mutation C634Y and linked it to a constitutive 

activation of RAS/MAPK and AKT/PI3K signalling (Salvatore et al., 2001).  
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2 RESULTS AND DISCUSSION 

2.1 PAPER I 

Lipid rafts are lipid-ordered membrane domains that have been shown to harbour amongst 

others myristoylated proteins, as well as some transmembrane proteins like tyrosine kinases. 

One such tyrosine kinase is RET, which can be recruited to lipid rafts upon activation both 

through cis and trans GFRα1 association, and interacts with different adaptors inside and 

outside of lipid rafts (Paratcha et al., 2001). After stimulation with GDNF, RET quickly 

becomes ubiquitinated outside of lipid rafts, which initiates RET degradation. RET 

ubiquitination and degradation within rafts is considerably lower, suggesting a mechanism 

for sustained RET signalling via the raft-bound adaptor FRS2 (Pierchala et al., 2006). 

Taking advantage of the different affinities of PTB proteins for different sequences -4 to -8 N-

terminal of the PTB motif NXXpY, RET receptors were genetically engineered to 

preferentially bind either SHC or FRS2 at Y1062 (Lundgren et al., 2006). In functional in 

vitro studies we found that overexpression of these RET mutants resulted in different 

membrane localization patterns and that RET was detected in membrane foci upon FRS2 

recruitment (Lundgren et al., 2008b). 

Both SHC and FRS2 binding resulted in pY1062-dependent localization of RET into 

detergent-resistant membrane (DRM) domains, and this relocalization was abolished upon 

treatment with methyl-β-cyclodextrin, which extracts cholesterol from membranes and 

thereby disrupts lipid-ordered regions including lipid rafts. As DRM fractions consist of 

different lipid-ordered membrane domains and not exclusively of lipid rafts (Brown, 2006), 

we investigated the precise membrane localization of eGFP-tagged RET in combination with 

SHC or FRS2 overexpression. Co-staining for the lipid raft-specific ganglioside GM1 showed 

that RETeGFP is efficiently recruited into lipid raft domains in the presence of FRS2, but not 

SHC.  

In contrast to FRS2, SHC lacks a myristoylation tail anchoring it in lipid rafts. To analyse the 

importance of adaptor localization for its signalling outcome, we modified SHC and attached 

a raft targeting sequence (MLS). SHCMLS was able to recruit RET to lipid rafts in a fashion 

similar to FRS2 as shown by cytochemistry of transfected SK-N-MC cells and density 

fractionation of the membrane of electroporated chicken embryo spinal cord cells. Regarding 
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intracellular signalling, we found that ERK activation by SHCMLS resembled FRS2 in that it 

was stronger and more sustained than that of regular SHC, while AKT phosphorylation of 

SHCMLS was at an intermediate level between those of FRS2 and SHC. The activation of ERK 

was attenuated in FRS2 and SHCMLS upon lipid raft disruption, while ERK activation by SHC 

was not affected. These results could be recapitulated in chicken embryo spinal cords that 

were electroporated with overexpression constructs for RET in combination with SHC, 

SHCMLS or FRS2. Interestingly, not only the PTB adaptors themselves, but also phospho-ERK 

was found in the DRM fraction when overexpressing the lipid raft bound adaptors. 

This intermediate position of SHCMLS in terms of signalling led to consequences in functional 

in vitro assays. Both FRS2 and SHCMLS supported cell migration of SK-N-MC cells in a lipid 

raft-dependent fashion while SHC failed to do so, and neither FRS2 nor SHCMLS promoted 

cell survival to the same extent as SHC. Thus, SHCMLS resembled FRS2 more than SHC in 

functional assays. 

In summary, this publication shows that specific compartmentalization of RET adaptors is a 

mechanism that controls which and how signalling pathways are activated, as well as that 

subcellular localization is a regulatory factor for the desired functional outcome of cell 

signalling. This is probably not specific to RET signalling, but may be a common mechanism 

also for other RTKs, explaining how one and the same signalling receptor can have different 

outcomes, depending on which intracellular adaptor it recruits. In case of polarized cell 

biological events such as migration, in contrast to more systemic situations like survival 

signals, recruitment of activated receptors to defined membrane domains like lipid rafts can 

also aid in the polarization of not only cytoskeletal rearrangements, but also the signalling 

machinery in general. 

2.2 PAPER II 

In vivo studies of RET signalling have so far only been performed in knockout animals for 

different signalling components like RET itself, one of the coreceptors GFRα1-4 or their 

ligands, or in receptor variants that were based on tyrosine replacements that affect all 

phosphotyrosine-dependent docking proteins that normally bind the mutated amino acid. 

Taking advantage of the different affinities of PTB domain proteins for different sequences N-

terminal of the PTB motif, we previously generated RET receptor variants that preferentially 

bind the Y1062 adaptors DOK, FRS2 or SHC (Lundgren et al., 2006; Stenqvist et al., 2008). 

To analyse the role of these adaptors in vivo we generated mice expressing the adaptor-
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specific RET receptors and studied their phenotypes. Ret9/9 mice express only the RET9 

isoform, while Ret9Dok/9Dok, Ret9Frs/9Frs and Ret9Shc/9Shc mice express the RET9 variants signalling 

preferentially via DOK, FRS2 or SHC, respectively. The RET9 variants will henceforth be 

referred to as RET9-DOK, RET9-FRS2 or RET9-SHC. 

Kidney development depends to a large extent on the availability of RET, GDNF and GFRα1. 

Both RET and GFRα1 are found in the tip cells of the branching UB, while GDNF is found in 

the surrounding tissue, acting as a chemoattractant (Murakami et al., 2002; Chi et al., 2009). 

We failed to find any phenotype in P8 kidneys in our mouse lines. This is an interesting 

finding, as Ret9/9 mice that have a Y1062F amino acid replacement fail to develop normal 

kidneys, indicating a central role of this residue in the RET9 isoform (Jain et al., 2006). Thus, 

activation of signalling through any of the adaptors recruited to Y1062 is sufficient for 

sustained kidney development, probably via the RAS/MAPK pathway, as this is the only 

signalling pathway that is activated by all three adaptors. The importance of this pathway is 

also supported by the finding that a loss of the MAPK/ERK inhibitors Sprouty 1 and 2 can 

rescue the RET knockout phenotype in nephrogenesis (Basson et al., 2005; Miyamoto et al., 

2010). 

The intestine is colonized by ENCC in a rostro-caudal direction, and reduced RET signalling 

can result in incomplete colonization (Uesaka et al., 2008). We found that signalling of RET 

Y1062 via FRS2 alone results in intestinal aganglionosis, while both RET9-DOK and RET9-

SHC are fully capable of supporting normal ENS development. This phenotype is already 

detectable as early as E10.5, when ENCCs in Ret9Frs/9Frs mice had barely left the foregut, while 

they had almost reached the caecum in control animals. RET signalling is important in the 

developing ENS for different cell biological processes such as proliferation, migration and 

survival (Heuckeroth et al., 1999; Taraviras et al., 1999; Barlow et al., 2003), and critical 

numbers of enteric precursor cells are required for complete colonization and ENS formation 

(Barlow et al., 2008). Hence, each of these functions of RET might be the underlying cause of 

the phenotype observed in Ret9Frs/9Frs mice. As described above, a knockout of the MAPK 

signalling regulators Sprouty1 and 2 can rescue the Ret knockout phenotype in the kidneys, 

but it can only partially do so in the stomach and not at all in the intestine. This suggests that 

PI3K signalling might be of higher importance in the ENS, while MAPK signalling controls 

nephrogenesis (Basson et al., 2005; Miyamoto et al., 2010). 
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RET is a known regulator of sensory neuron development. Mice lacking RET in sensory 

neurons present with changes in the expression of several ion channels and receptors, 

accompanied by behavioural deficits (Golden et al., 2010; Franck et al., 2011). NRTN and 

GFRα2 on the other hand control soma size of DRG neurons (Luo et al., 2007; Golden et al., 

2010). We found that RET9-FRS2 does not provide sufficient trophic support for DRG 

neurons, resulting in reduced cell soma size, while normal cell numbers are maintained. This 

suggests a NRTN-GFRα2-DOK/SHC axis of signalling that is essential for soma size 

development. RET9-SHC expression results in aberrant subtype specification and behaviour. 

We found a downregulation of Nav1.8 and P2x3 and a markedly increased expression of 

Trpm8, similar to Ret sensory neuron conditional mutant mice (Franck et al., 2011). Ret9Shc/9Shc 

mice have higher cold sensitivity and show stronger itch behaviour upon stimulation with 

chloroquine and 5-HT. Interestingly, Ret9Frs/9Frs mice showed increased mechanosensitivity at 

an early postnatal age, similar to Ret conditional mutant mice, but this phenotype was 

observed without any detected difference in expression levels of sensory markers. This 

indicates either that RET controls expression of a gene product which is critical for 

mechanical sensation but was not analysed in our study, or that a change of soma size alone 

results in a shift in sensitivity. 

All observed phenotypes in the Ret9Frs/9Frs and Ret9Shc/9Shc mice are also found in conditional Ret 

knockout mice. However, not all molecular changes observed in the knockouts were found in 

the rewired RET receptor bearing mice. This suggests that other tyrosine residues than Y1062 

might affect sensory specification. 

In the sympathetic nervous system, RET plays a central role in the regulation of lineage 

specification. Ret knockout mice lack cholinergic neurons at E15.5, with a corresponding 

increase in the noradrenergic population (Burau et al., 2004). During lineage specification, a 

former hybrid population expressing markers of both the cholinergic and noradrenergic 

lineage downregulates cholinergic markers in most sympathetic neurons, while only a small 

population of 10% maintains cholinergic and turns off noradrenergic markers. Interestingly, 

we found an increase in the cholinergic population in Ret9Frs/9Frs animals, consistent for all 

analysed factors of the cholinergic lineage such as VAChT, VIP, TLX3 and RET. Surprisingly, 

we did not detect any difference in the number of cells expressing noradrenergic markers. 

Further analysis showed a striking nearly 4-fold increase of sympathetic neurons expressing 

both Th and Vacht.  
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Since the total number of noradrenergic neurons was unchanged, we concluded that Ret9Frs/9Frs 

mice partially fail to diversify sympathetic neurons into the distinct noradrenergic and 

cholinergic phenotypes and that cholinergic markers fail to be downregulated in a group of 

noradrenergic cells. 

In summary, we showed that RET adaptor proteins at Y1062 have tissue-specific roles, with 

binding of DOK or SHC being crucial in the ENS, for trophic support of sensory neurons and 

for lineage segregation in the SNS. Signalling via DOK or FRS2 on the other hand is essential 

for subtype specification of sensory neurons. 

It would be interesting to extend our analysis to other organ systems, for example the 

nigrostriatal and parasympathetic systems, where GDNF signalling has been reported to be 

essential for neuronal survival (Pascual et al., 2008). The pro-survival effect of GDNF on 

nigrostriatal neurons has been suggested to rely on MAPK/ERK and does not depend on 

PI3K/AKT (Peterziel et al., 2002). Although also Y905 activates MAPK/ERK through 

GRB7/10, there is reason to expect an involvement also from Y1062 and/or Y1096, both of 

which represent binding sites for other MAPK activators, such as SHC, FRS2, DOK and 

GRB2. 

2.3 PAPER III 

Lineage specification in the SNS is controlled through a network of growth and transcription 

factors. Already at E10.5, the transcription factors PHOX2B and HAND2, in concert with 

GATA2/3, are required for the establishment of the noradrenergic lineage and promote 

expression of Th and Dbh (Apostolova and Dechant, 2009). For later stages of SNS 

development, it has been suggested that lineage specification is under the control of extrinsic 

factors (Habecker and Landis, 1994; Asmus et al., 2001).  

Although previous reports described the expression and function of key regulators in the 

early transcriptional network, a detailed analysis of the mechanisms of the noradrenergic and 

cholinergic lineage segregation during embryonic development has not been presented. 

Our aim was to elucidate the molecular network of transcriptional regulation and growth 

factor signalling underlying the lineage segregation of sympathetic neurons. 

First, we investigated the expression of several marker molecules throughout embryonic 

development and found that sympathetic progenitors express both noradrenergic and 
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cholinergic features at E12.5. This suggests that the first sympathetic neurons are formed as 

hybrid cells with a mixed phenotype. The transcription factor HMX1 was expressed in hybrid 

cells from E13.5 and already at E18.5 the noradrenergic and cholinergic populations were 

largely segregated. Using genetic tracing we could show that both neuronal populations are 

derived from a common RET+ pool of progenitors, suggesting that emergence of the distinct 

neuronal populations is by large a process of gene repression. 

The upregulation of HMX1 was accompanied by a downregulation of TRKC and RET. At 

E18.5, virtually all HMX1+ neurons were TRKA+ and noradrenergic, whereas the remaining 

RET+ cells were ChAT+ and cholinergic. 

Knockout of Trkc resulted in increased Hmx1 expression, paralleled by a gain of TRKA and a 

loss of RET. Knockout of Hmx1 on the other hand resulted in a marked loss of TRKA at 

E15.5 and P0 and TH expression at P0. The few remaining TRKA+ cells at P0 coexpressed 

RET. This indicates an antagonistic effect of HMX1 and TRKC in the control of lineage 

specification. Interestingly, TRKA was already lost from E15.5, while TH was still found at 

normal levels at this stage and was lost only later on. Vice versa, the cholinergic markers Ret, 

Vip and Sst were all found at highly increased levels at E15.5 and P0 due to a de-repression, 

while Chat and Vacht were unchanged. HMX1 therefore seems to supress both Ret, Vip and 

Sst expression, while Chat and Vacht regulation is independent of HMX1. RET is required for 

the maintenance of cholinergic markers, but increased RET levels as a consequence of a de-

repression are not sufficient to maintain Chat and Vacht expression, suggesting additional 

repressive factors besides HMX1. 

While the loss of HMX1 did not change the expression of Chat and Vacht, Trkc-/- mice 

showed both a decrease of ChAT and an increase of TH and therefore present an actual 

switch of cell fate. 

We found that Ret-/- mice showed ectopic expression of Hmx1 in cells that usually would be 

expressing Ret at this stage, together with a gain of TRKA and a loss of the cholinergic 

markers VAChT, SST and VIP, which is in line with previously published results (Burau et 

al., 2004). 

In summary our results uncover a gene regulatory network that controls the specification and 

diversification of sympathetic neurons. Hmx1 expression is initiated in early sympathetic 

hybrid neurons and turns on TRKA expression. HMX1 is crucial for the maintenance of the 
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noradrenergic population and for the suppression of a cholinergic fate and therefore 

represents a critical part of the gene regulatory network during noradrenergic sympathetic 

neuron development. TRKC, expressed in early progenitors, is an upstream regulator 

supporting Ret expression and inhibiting Hmx1 expression and is therefore participating in 

the establishment of the cholinergic lineage. Maintenance of Ret expression suppresses Hmx1 

and thereby drives cholinergic neuron specification. Possible candidate ligands that may 

initiate the above gene regulatory networks include WNT or BMP factors, both of which are 

expressed at early stages of neural crest development, and BMPs released by the dorsal aorta 

have been shown to be essential for the establishment of a sympathetic phenotype (Schneider 

et al., 1999; Goridis and Rohrer, 2002). 

A remaining question is which of these early factors are controlling the onset of expression of 

Hmx1 and repress Trkc. A recent study suggested a role for PROX1 in developing 

sympathetic ganglia in chicken, with Prox1 being expressed in proliferating cells (Holzmann 

et al., 2015). While it is unknown which sympathetic factors are coexpressed in these cells, it 

opens up for speculation if Prox1 might be expressed in the TRKC+ precursor population that 

shows a similar decrease during development as PROX1.  
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3 CONCLUSIONS 

In the presented thesis I investigated the role of RET signalling in cell biology and during 

different processes in murine development.  

We show that RET signalling via the membrane anchored FRS2 adaptor depends on the 

integrity of lipid rafts. A membrane-localized variant of the otherwise lipid raft independent 

SHC adaptor differs in its signalling outcomes from normal SHC and resembles that of FRS2 

instead. This indicates that the specificity of downstream pathways is not only controlled by 

which adaptor is signalling, but also from where within the cell it does so. 

I describe organ and cell type specific roles of different adaptors at RET Y1062 in vivo. While 

some organ systems develop normally irrespective of which adaptor is signalling, others show 

erroneous development upon adaptor restriction, indicating non-redundant adaptor 

functions and a dependence on defined pathways. I also show that the approach of amino 

acid replacement for engineering of adaptor-specific RTKs is not only feasible for in vitro 

studies, but can also be employed for in vivo analysis of receptor signalling. 

In the sympathetic nervous system, the specification of the cholinergic and noradrenergic 

lineages is tightly controlled by transcription factors and cell surface receptors. We show that 

early markers of both lineages regulate and supress each other, establishing a complex 

network of cross-regulatory effects. RET is required for the maintenance of cholinergic 

markers, while HMX1 favours the noradrenergic lineage and supresses some cholinergic 

markers including RET. 

To conclude, I described that the subcellular receptor localization influences biochemical and 

functional properties of RTKs in vitro. In addition, I found that the different RET Y1062 

adaptors have both overlapping and tissue-specific roles during development. Last but not 

least, I presented a gene regulatory network that governs the lineage segregation in the 

sympathetic nervous system. 
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