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1 SUMMARY
Allogeneic stem cell transplantation (SCT) is the choice of therapy for leukemia patients
who respond poorly to conventional chemotherapy. Despite high remission rates after
SCT, relapse of the underlying disease remains one of the most frequent causes of
treatment failure. Graft-versus-host disease (GVHD), a major complication after SCT, is
caused by the activation of alloreactive donor T-cells. Although being life threatening in
its severe forms, GVHD has a protective effect called the graft-versus-leukemia effect
(GVL). In order to use the GVL effect of donor T-cells, donor lymphocyte infusions (DLI)
is now used as a treatment for relapse after SCT. Response to DLI is usually better when
the tumor load is low. Therefore, sensitive methods to detect residual leukemic cells are
needed in order to identify patients who are at the highest risk of relapse and to start
immunotherapeutic interventions when the tumor load is still low. Minimal residual
disease (MRD) refers to the presence of leukemic cells below the detection limit of
standard morphological analysis. The most sensitive and widely used techniques for MRD
detection are based on the PCR technology. The aim of this thesis is to evaluate the
clinical significance of MRD detection in leukemia patients receiving SCT.
In patients with acute myeloid leukemia (AML), we evaluated the significance of mixed
chimerism (MC) analysis, the detection of recipient-derived hematopoietic cells after SCT.
MC analysis was performed in the leukemia-affected cell lineage to increase the
specificity and sensitivity of the method. MC was detected in 14 of 30 patients. Ten of
these 14 patients relapsed as compared to 2 of 16 with donor chimerism (p<0.01). MC was
detected a median time of 66 (range 23-332) days before hematological relapse.
Using immunoglobulin and T-cell receptor gene rearrangements as clonal markers, we
analyzed MRD levels before and after SCT in patients with acute lymphoblastic leukemia
(ALL). MRD detection before SCT was associated with increased risk of relapse.
However, GVHD was shown to protect against relapse in patients with high levels of
MRD. MRD detection after SCT was also associated with a high risk of relapse. Relapse
occurred in 8 of 9 MRD positive patients as compared to 6 of 23 MRD negative patients
(p<0.01). MRD was detected a median of 5.5 (range 0.5-30) months before relapse.
In recent years, nonmyeloablative SCT (NST) has been studied as a safer approach for
patients who are not eligible for the toxic conditioning regimens given before SCT. We
studied the kinetics of MRD and MC in chronic myeloid leukemia (CML) patients
receiving NST and compared the results to those obtained from CML patients receiving a
conventional SCT (CST). A competitive PCR approach was performed for quantitative
MRD analysis of BCR-ABL transcripts. In the early posttransplant period, higher
incidence and levels of MC and MRD were found in NST patients as compared to CST
patients. However, molecular remissions were subsequently achieved in most NST
patients.
Wilms’ tumor gene (WT1) has been reported as a “panleukemic” MRD marker in many
studies. We wanted to evaluate WT1 as a MRD marker by comparing the kinetics of WT1
levels with that of BCR-ABL using realtime quantitative PCR. We found a background
expression of WT1 healthy controls. In addition, WT1 analysis was not sensitive enough
to predict relapse.
In conclusion, MRD analysis in leukemia patients provides the possibility to identify
patients at high risk of relapse after SCT. Adoptive immunotherapy based on MRD results
may prevent relapse and improve outcome for patients with poor prognosis.
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2 INTRODUCTION
2.1 LEUKEMIA

The term leukemia is derived from the Greek and means “white blood”. Leukemia is a
malignant disease (cancer) of the bone marrow and blood.1 Leukemia accounts for
approximately 2% of all cancer cases and affects all ages and sexes.2 Although the cause
of leukemia is unknown, some risk factors are exposure to radiation and chemicals such as
benzene.3 As leukemia progresses, function of the bone marrow becomes impaired and if
the disease is unchecked, the abnormal cells become dominant and are carried throughout
the body by the bloodstream. Uncontrolled, leukemia causes infections, due to the lack of
normal white blood cells; severe anemia, due to lack of red blood cells; and bruising and
hemorrhaging, due to lack of platelets. The aim of leukemia treatment is to bring about a
complete remission (CR). CR means that there is no evidence of the disease and the
patient returns to good health with normal blood and marrow cells. Relapse indicates a
return of the cancer cells and return of other signs and symptoms of the disease. For
leukemia, a CR that lasts five years after treatment often indicates cure.
Leukemia is divided into four categories, myeloid or lymphoblastic, each of which can be
acute or chronic. Acute leukemia affects immature white blood cells, progresses rapidly,
and is the type most often seen in children. Chronic leukemia occurs most often in adults
and progresses slowly, often over a period of many years.

Acute Lymphoblastic Leukemia (ALL). ALL is the most common leukemia in children.
It is usually diagnosed in children less than 10 years old of age but increases in frequency
in older individuals (>50 years).4 ALL is divided into T-ALL and B-ALL according to the
cell type involved. About 85 % of the ALL cases involve the B-cell subtype, which is
usually less aggressive than T-ALL. In addition, B-ALL can be further subdivided
according to the French-American-British (FAB) classification (L1, L2 and L3).5 Other
aspects, such as surface markers and chromosomal aberrations are also used for
identification of different subtypes. These biological features of the leukemic cells are
important prognostic factors.
Using chemotherapy only, more than 70% of children with ALL are alive and disease-free
at five years.6 The corresponding number in adults is lower. Patients with initial poor
prognostic factors and those who relapse after chemotherapy are considered for allogeneic
stem cell transplantation (SCT).7

Acute Myeloid Leukemia (AML). AML can occur at any age but increases exponentially
in incidence after 45 years old of age.4 This leukemia can have many different genetic
alterations and the appearance of the leukemic cells can be represented by many different
subtypes. AML is subdivided into eight FAB subgroups according to the different patterns
of blood cell involvement (AML M0 to M7). Although several genetic changes, especially
translocations of chromosomes, are relatively common, a large proportion of patients has
uncommon or rare genetic changes.
In childhood AML, chemotherapy has improved outcome but the results are not as
dramatic as in ALL; 5-year disease-free survival rate is 40-50%. Therefore, a high
proportion of AML patients is considered for SCT.8
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Chronic Myeloid Leukemia (CML). CML is considered an “adult” leukemia because it
usually occurs in individuals >30 years of age. It is uncommon in children (<2% of the
CML cases). CML is distinguished from other types of leukemia by the presence of a
genetic abnormality in leukemia cells, the Philadelphia chromosome (Ph).9 Ph is detected
in ~95% of the CML cases and is the result of a chromosome translocation involving
chromosomes 9 and 22, t(9;22). This fusion leads to an abnormal fused gene called BCR-
ABL. The protein produced by the BCR-ABL gene functions abnormally and leads to
dysfunctional regulation of cell growth and survival. Most CML patients are diagnosed in
the chronic phase (CP) of the disease. In time, the CP can evolve into a more rapidly
progressive phase, referred to as “accelerated phase” and ultimately “blast crisis”, resistant
to current treatment.
Interferon-α has been an important drug in the treatment of CML. However, at the present
time, SCT is the only curative form of treatment for CML.10 Recently, a new drug has
been introduced. Imatinib mesylate (Glivec, STI571) binds to the BCR-ABL protein and
block its effects. Current studies indicate that patients undergoing treatment with imatinib
have an increased likelihood of achieving a complete remission. Because this therapy is
only a few years old, it is unknown at this time if the complete remissions achieved with
imatinib therapy will be as long lasting as the case after successful SCT.
Chronic Lymphoblastic Leukemia (CLL). CLL is the most prevalent form of
leukemia.11 The disease is very uncommon in individuals under 45 years of age. At the
time of diagnosis, 95 percent of patients are over age 50, and the incidence of the disease
increases dramatically thereafter. As in the case of ALL, the B-cell type of CLL is more
common than the T-cell type.
CLL is a type of leukemia that can be stable and not disturb the patient’s well being for
prolonged periods without treatment. Chemotherapy is usually used to treat progressive
CLL. SCT is used in very few cases of CLL and therefore this disease will not be
discussed further.

2.2 ALLOGENEIC STEM CELL TRANSPLANTATION (SCT)

The first studies of human SCT were pioneered by Thomas E. Donnall and colleagues in
the late 1950s.12,13 Although all the early clinical transplantation efforts failed, most
probably due to poor human leukocyte antigen (HLA) matching, research continued and
more successful transplantations were reported in the early 1970s.14-16 For his pioneer
work in this field, Thomas E. Donnall received the Nobel Prize in medicine in 1990.
Today, SCT is a well-established treatment method for hematological malignancies (e.g.,
leukemia, lymphoma and myeloma), nonmalignant bone marrow disorders (aplastic
anemia) and genetic diseases associated with abnormal hematopoiesis and function
(thalassemia, sickle cell anemia and severe combined immunodeficiency).15-19 SCT allows
the replacement of the patient’s diseased hematopoietic system with a normal one. In
autologous SCT, the patient’s own bone marrow is cryopreserved prior to administration
of chemotherapy and/or high-dose radiation therapy. The marrow cells are then thawed
and infused into the patient to reestablish hematopoiesis. Because there is a risk that
autologous stem cells may contain viable tumor cells, different methods have been
developed in order to remove tumor cells from the stem cells.20

In allogeneic SCT, which is the main topic in this thesis, stem cells are mainly taken from
an HLA identical sibling or an HLA matched unrelated donor (MUD). An HLA identical
sibling, which is the ideal donor, can be found for only ~30% of all patients. Because HLA
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molecules are highly polymorphic and important for the outcome of SCT, it has been
necessary to develop large donor registries. Currently, more than 8 million individuals
have volunteered to serve as donors and the chance to find a MUD is ~60-90%, depending
on the ethnic origin of the patient.

2.2.1 Conditioning and nonmyeloablative SCT

Before the transplantation, patients receive a conditioning regimen in order to eradicate
malignant cells and prevent graft rejection by immunosuppression of the patient. Total
body irradiation (TBI) and chemotherapeutic agents like cyclophosphamide (Cy) and
busulfan (Bu) are commonly used in different conditioning regimens.15,16,21 These standard
regimens are myeloablative and highly toxic for the patients, restricting its use to patients
younger than 50-55 years of age who are in good medical condition. Therefore, less toxic
and nonmyeloablative conditioning regimens have been developed for older patients and
those with poor medical condition.22-26 Also, the observation that the antitumor effect of
transplantation derives not only from the conditioning regimen but also from the
transplanted donor cells has led the investigators to ask whether nonmyeloablative SCT
might be as effective as standard SCT.
Although, early results with nonmyeloablative SCT are encouraging, especially in older
patients, the lack of comparative data between both transplant methods, the heterogeneity
of the studies and the short follow-up have made it difficult to evaluate this new
approach.27,28 A direct comparison between different studies has also been complicated by
the different nonmyeloablative regimens that have been used.

2.2.2 Stem cell source

While bone marrow (BM) traditionally has been the source of stem cells for
transplantation, the use of peripheral blood (PB) has increased dramatically since the first
reports in the mid-1990s and has now essentially replaced BM as the source of stem cells
for allografting.29-31 Therefore, the term “bone marrow transplantation” generally has been
replaced by “hematopoietic stem cell transplantation”.
Hematopoietic stem cells usually circulate in the PB at very low concentrations, but
following administration of hematopoietic growth factors such as granulocyte colony
stimulating factor (G-CSF) or granulocyte/macrophage colony stimulating factor (GM-
CSF), the concentration of stem cells in the PB increases substantially. Although the
number of T-cells infused is ten times higher using PB stem cells (PBSC) as compared to
BM, there is no increased risk for developing acute graft-versus-host disease (GVHD)
after PBSCT.32-34 However, the use of PBSC seems to be associated with more chronic
GVHD.35,36 Although the effect on relapse is still unclear, some of the benefits using
PBSC are the ease of collection, acceleration of engraftment and immune reconstitution.37

Umbilical cord blood is a rich source of hematopoietic stem cells and has been
successfully used to reconstitute hematopoiesis after SCT.38,39 Banks of cryopreserved
cord blood have been established as an alternative to unrelated SCT. Potential advantages
include the rapid availability and because cord blood is relatively deficient in T-cells,
some degree of HLA mismatching might be tolerated. However, the use cord blood has
been associated with slower engraftment and an increased risk of graft failure.40,41 The low
cell content of cord blood collections has limited the use of this approach to children,
although adult patients have been included in more recent years.
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2.2.3 Graft-versus-host disease (GVHD)

Graft-versus-host disease (GVHD) is one of the major complications after SCT and is the
main reason for transplant-related mortality (TRM). GVHD is an immunologically
mediated disease where T-cells in the donor graft attack and destroy recipient cells.42

GVHD occur in the majority of the patients (>80%) depending mainly on factors such as
disparity in HLA, donor type and GVHD prophylaxis.43-45

Acute GVHD usually develops within the first three months following SCT. The main
target organs include the immune system, skin, liver, and intestine. Depending on the
involvement and severity of the damage on skin, liver and intestine, acute GVHD is
clinically graded from grade I to grade IV.46 In grade I (mild GVHD), only local skin
rashes can be seen while in grade IV with severe organ damages, the mortality is almost
100%.
Chronic GVHD usually develops more than 100 days after SCT with an incidence of 40-
60%. A prior acute GVHD increases the probability of chronic GVHD, which is graded as
limited, or extensive.47 The mechanism of chronic GVHD is less understood than acute
GVHD. Interestingly, the usual symptoms of chronic GVHD resemble those of
autoimmune disorders.
One of the main complications associated with GVHD, beside tissue damage, is severe
immunological deficiency. Bacterial, viral and fungal infections are usually the causes of
death in patients with more severe GVHD.48-50

In order to decrease the incidence of GVHD, immunosuppressive agents are given to
patients for a prolonged period after SCT. A combination of cyclosporine A (CsA) and
methotrexate (MTX) is usually used as GVHD prophylaxis.44 T-cell depletion of the graft
is an efficient way to decrease the incidence of GVHD.51,52 However, T-cell depletion is
associated with increased risk of graft failure and leukemia relapse53,54, showing that T-
cells are not only responsible for GVHD but also important in the engraftment process and
the graft-versus-leukemia effect (discussed later).

2.3 RELAPSE

After SCT, high remission rates can be induced and in some cases, the remission status
will continue without evidence of recurrent leukemia. However, in many patients, relapse
of the underlying disease will be a major obstacle to successful SCT. The incidence of
relapse depends on different factors, but patients can basically be divided into high-risk
and low-risk groups, depending on the remission status at the time of SCT. Patients
transplanted in second or later remission or in relapse are usually considered as high-risk
patients. The relapse incidences in ALL, AML and CML patients transplanted between
1990-2003 at Huddinge University Hospital are shown in Table 1. The outcome for
patients who relapse after SCT is usually poor and depends on the underlying disease and
the time between SCT and relapse. Relapse early posttransplant is associated with high
mortality and low rate of complete remissions.55 Patients with post-SCT relapse may be
treated with additional chemotherapy or with intensive conditioning followed by a second
SCT. A second SCT, however, is quite toxic and the rate of long-term survivors is low,
especially if relapse occurs within 6 months after SCT.56 Current treatment methods
against relapse after SCT are based on adoptive immunotherapy in order to increase the
graft-versus-leukemia effect.



Mehmet Uzunel

6

Table 1. Incidence of relapse at Huddinge University Hospital after SCT, 1990-2003
Disease Stage at SCT N= Relapse incidence1 Mortality after relapse
CML CP1 100 24% 2 38%

>CP1 22 31% 86%

ALL CR1 38 40% 93%
>CR1 55 56% 77%

AML CR1 80 31% 88%
>CR1 59 39% 91%

1Kaplan-Meier estimates at 5 year. 210/24 relapses were based on cytogenetics.

2.4 GRAFT-VERSUS-LEUKEMIA (GVL)

Evidence for a graft-versus-leukemia effect (GVL) effect in humans was first reported in
1979 with the observation that the risk of relapse was lower in patients who developed
GVHD than in those who did not.57 Later studies confirmed these results and showed that
relapse rates are lowest in patients with both acute and chronic GVHD, higher in patients
with no GVHD and highest in recipients of T-cell depleted allogeneic marrow or
syngeneic - i.e., twin, marrow.58 These findings led to the idea of using GVHD and T-cells
in adoptive immunotherapy, to manipulate GVHD and T-cells in order to treat or decrease
the risk of leukemic relapse.

Withdrawal of immunosuppression can be used to increase the reactivity of donor T-cell
against recipient/leukemic cells. However, in most cases this is followed by the infusion of
donor leukocytes.
Donor leukocyte infusion (DLI): Because T-cells were recognized to be important in the
GVL effect, it seemed logical to use these cells to treat leukemia relapse after SCT. Kolb
et al first reported that CML patients achieved complete cytogenetic remission when
treated with infusions of “buffy-coat” cells from the original transplant donor.59 The
effectiveness of DLI to treat relapsed CML has since then been confirmed in many
studies.60 However, while remission rates of 70-80% have been reported for CML
patients, the corresponding results for AML (<30%) and ALL (<20%) have not been
encouraging.61,62 This difference in GVL responsiveness is also evident in the case of T-
cell depleted transplants, which increases relapse rates in CML patients more dramatically
than in AML and ALL patients.53,54,63 It is not clear yet why the GVL reaction is stronger
in CML but some explanations may be the ability of leukemic cells to present antigens, the
presence of costimulatory molecules and cell growth rate. In CML, differentiation toward
antigen presenting cells (dendritic cells) can occur. These cells can stimulate and sustain a
reaction against leukemia.
Major complications after DLI are pancytopenia and GVHD. Although GVHD and GVL
are closely related, different strategies have been developed to separate GVL effects from
GVHD in order to maintain (or increase) the antitumor activity of DLI but limit the
damage to normal tissues.
1. Titration of the T-cell dose in DLI. The use of escalating doses may reduce the

incidence and severity of GVHD, while preserving the GVL effect.64,65
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2. Insertion of a “suicide gene” into donor T-cells prior to DLI and pharmacologically
induce the death of the transduced cells when the antileukemic effect has been achieved
or GVHD becomes more severe.66,67

3. Selective infusion or depletion of CD4+ or CD8+ T-cell subpopulations. Some clinical
data suggest that depletion of CD8+ T-cells from the allograft or DLI can reduce
GVHD without significantly decreasing the GVL effect.68-70

4. Co-administration of interleukin-2 (IL-2) to enhance the antileukemic effect of donor
T-cells.71

5. Selective removal of alloreactive T-cells.72,73

6. Selection of donor cells with anti-leukemia activity or specific activity against antigens
expressed only on cells of the hematopoietic lineage.74,75

One strategy to enhance the GVL effect is to reduce the leukemic burden before DLI or
give DLI when the tumor burden is still low. The correlation between tumor burden and
response to DLI has been described for CML, but is less clear for other hematological
malignancies.76-78 CML patients treated with DLI at the time of molecular or cytogenetic
relapse have a higher rate of response to DLI than those treated at the time of
hematological relapse.77,79

As mentioned earlier, patients with acute leukemia, AML and ALL, respond poorly to DLI
given at the time of hematological relapse. However, the presence of a GVL effect in ALL
is well established.58,80 GVHD after SCT usually decrease the relapse rates in ALL. These
findings suggest that GVHD and T-cells may protect against relapse in acute leukemias
when the tumor burden is low. Although no major studies have started early interventions
based on MRD results, some cases have been described with encouraging results.78,81-84

Therefore, sensitive methods to detect residual disease are needed in order to identify
those patients at the highest risk of relapse and to start immunotherapeutic interventions at
the level of minimal residual disease.
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3 MINIMAL RESIDUAL DISEASE
A patient with leukemia is considered to be in complete remission (CR) when no blast
cells are detected by light microscopic examination of the BM. The sensitivity of this
method is 1-5%. At the time of diagnosis, the number of leukemic cells is approximately
1012, which means that a patient in CR can still harbor as many as 1010 leukemic cells,
cells which are responsible for relapse if they are not eradicated by chemotherapy or SCT.
Minimal residual disease (MRD) refers to the presence of leukemic cells in the BM of
patients in CR (Figure 1). A number of techniques have been developed that are
substantially more sensitive than morphology for detecting MRD and assessing response
to treatment. In the next sections, the most common used MRD methods after SCT are
described and the specific advantages and disadvantages of each method are discussed
(Table 2). The clinical significance of MRD detection, using different techniques, will also
be discussed at the end of this chapter.

Figure 1. Minimal residual disease (MRD) refers to the presence of leukemic cells below the
detection limit of standard morphological analysis (10-2). Different methods have been
developed for MRD analysis.
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3.1 METHODS
3.1.1 Immunophenotype analysis

Immunological methods were among the first used in MRD studies and rely on the use of
specific monoclonal antibodies that bind to antigens expressed on the cell-surface
membrane, in the cytoplasm or in the nucleus. Although, there are some abnormal proteins
associated with specific leukemias (e.g., BCR-ABL in CML), the use of a single marker
usually does not distinguish leukemic cells from normal ones. Therefore, immunological
detection of MRD is based on identifying combinations of leukocyte antigens found on
leukemic cells, but not on normal cells, in PB and BM. These phenotypes can be
determined by double or triple color staining with antibodies conjugated to different
fluorochromes and the labeled cells can be analyzed by a fluorescence activated cell sorter
(FACS), flow cytometry. With the new cytometers, four and five color analysis is
possible, increasing the specificity and informativity of the MRD analysis.
Immunophenotype analysis is usually performed in ALL and AML patients only, because
CML patients are monitored with molecular methods for the presence of BCR-ABL
transcript.

Applicability. In T-lineage ALL, the combination of CD3 and TdT (Terminal
deoxynucleotidyl transferase) is enough to monitor MRD in almost all patients.85 Because
the normal counterparts of T-ALL cells are immature T-cells in the thymus, detection of
MRD in patients with this subtype simply consists of the identification of immature cells
outside the thymus.
In B-lineage ALL and AML, however, the normal counterparts of leukemic cells are
immature progenitors normally present in the BM. Therefore, MRD studies in B-ALL and
AML are more complicated and a larger panel of antibodies is needed in order to
distinguish leukemic cells from normal cells. Nevertheless, with the combination of 3-4
markers and the use of several combinations (phenotypes), MRD studies can be performed
in 60-90% of B-ALL and AML patients.86,87

Sensitivity. The sensitivity of MRD detection with flow cytometry depends mainly on two
variables: (1) the degree of morphological and phenotypic difference between the target
cells and normal cells and (2) the number of cells that can be analyzed.
Immunophenotypes that do not overlap between normal and leukemic cells will increase
the sensitivity. The number of cells that can be analyzed in clinical samples is usually less
than 106. Considering that 10-20 dots are needed to interpret a suspect flow cytometric
event, the maximum sensitivity that can be achieved is 10-5. However, most studies report
a sensitivity of 10-4.

Advantages and disadvantages. Because both leukemic and normal cells are counted
directly in the flow cytometry, MRD quantification is more simple and accurate as
compared with molecular methods.88 Another advantage is that different parameters of the
flow cytometry can be used to discriminate between viable and dying cells.
With a sensitivity of 10-4, a fraction of the patients at risk of relapse will be missed. The
method is difficult to perform and therefore restricted to highly specialized laboratories.
Another limitation of the method is that the immunophenotype of leukemic cells may
change during the course of treatment and disease progression, leading to false negative
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results. This problem can be overcome with the use of several immunophenotypes per
patient.89

3.1.2 Polymerase Chain Reaction (PCR)

Currently, the most sensitive and widely used technique for MRD detection is polymerase
chain reaction (PCR). The PCR technique, first described in 1985, is a primer-mediated in
vitro reaction for specific nucleic acid amplification.90,91 The method is based on repetitive
annealing and extension of two oligonucleotide primers that flank the region of interest in
the template DNA. A DNA polymerase is required to catalyze the reaction in which the
primer pair and four deoxynucleotide tri-phosphates (dNTPs) are used to create a
complimentary DNA sequence. If RNA is the desired template for PCR amplification, a
reverse transcription (RT) step is required to obtain a complementary DNA (cDNA) copy
that can be used in the PCR reaction.
PCR is a very sensitive method. If you start with one copy of the original template,
theoretically you will end up with 109 copies after 30 cycles of PCR amplification. This
ability to produce large number of copies, however, is a problem when PCR products are
carried over between samples. This cross-contamination might be difficult to recognize
and will lead to false-positive results. Therefore, different precautions are needed to
minimize the risk of cross-contamination when working with PCR.92

The first PCR based methods for MRD detection were reported in the late 1980s.93-95 Most
of these initial studies were performed using qualitative PCR. Although this approach may
be useful in certain cases, it only gives limited information and does not allow analysis of
tumor kinetics. Quantitative PCR methods were developed to monitor the change of tumor
load during follow-up. Many of these semiquantitative MRD studies were based on end-
point quantification. The PCR reaction generates copies of a DNA template in an
exponential fashion. Due to accumulation of inhibitors during the PCR process, the PCR
reaction will eventually reach a plateau phase where no further PCR product is generated.
End-point PCR analysis is done when the plateau phase has been reached, and therefore
there is usually a lack of correlation between the amount of PCR product and the initial
amount of target molecules. More quantitative methods such as competitive PCR and
limiting dilution are also based on post-PCR, end-point analysis.96,97 These techniques
require serial dilutions and the analysis of multiple replicates, both of which introduce
variability and may be too difficult and time-consuming to be performed routinely.

Realtime quantitative PCR (RQ-PCR). The novel RQ-PCR technique circumvents
many of the problems associated with semiquantitative PCR analysis and permits accurate
quantification during the exponential phase of the PCR reaction. Accumulation of PCR
products is continuously (realtime) monitored during the cycles allowing rapid
quantification without post-PCR processing - e.g., gel analysis. The detection system in
RQ-PCR is based on fluorescent signals generated during the PCR process. The increase
of fluorescent signals after each cycle is detected by the realtime instrument. Depending
on the method applied, fluorescent signals can be generated in different ways.
SYBR Green I. The simplest and cheapest RQ-PCR technique is based on the DNA
binding dye SYBR Green I. This dye is included in the PCR reaction and generates
fluorescent signals when it binds to double-stranded DNA. As the amount of PCR product
increases after each cycle, more SYBR Green dye will bind and increase the fluorescent
signal. The major disadvantage of using SYBR Green is that it binds to PCR products
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nonspecifically. Therefore, the fluorescent signal will also include nonspecific PCR
products and primer-dimers. A melting-curve analysis can be performed at the end of the
PCR reaction to evaluate whether unspecific PCR products are present. This analysis is
based on the fact that PCR products of different length and sequence will melt at different
temperatures.
Hybridization probes. In this approach, two probes are included in the PCR reaction in
addition to the amplification primers. The probes are designed to bind to closely
juxtaposed sequences on the amplified DNA. One probe is labeled with a donor
fluorochrome at the 3’ end, and the other is labeled with an acceptor fluorochrome at its 5’
end. A fluorescent signal is generated when the two probes are bound to the target and the
fluorochromes are brought next to each other (within 1-5 bp nucleotides). Consequently,
the fluorescent signal will be at maximum at the annealing phase of the PCR cycle, which
is in contrast to SYBR Green I chemistry where the maximum signal is reached at the end
of the PCR cycle. The RQ-PCR equipment usually used together with hybridization
probes is the Lightcycler (Roche, Alameda, CA, USA).
TaqMan probes (hydrolysis probes). In this method, the single probe is conjugated with
two fluorochromes, a 5’ end reporter fluorochrome and a 3’ end quencher fluorochrome.
As long as the two fluorochromes are in close vicinity of each other on the intact probe,
the fluorescence emitted by the reporter will be “silenced” by the quencher. However,
during the polymerization phase of the PCR cycle, the TaqMan probe is initially displaced
from the DNA strand by the Taq polymerase and subsequently hydrolyzed by the 5’ to 3’
exonuclease activity of this enzyme. This results in the separation of the two
fluorochromes and the fluorescent signal from the reporter becomes detectable (Figure
2A). Currently, the most commonly used reporter and quencher fluorochromes are FAM
(6-carboxy fluorescein) and TAMRA (6-carboxy-tetramethyl rhodamine), respectively. As
an alternative to TAMRA, several “dark” fluorochromes have become available. These
fluorochromes absorb the energy emitted from the reporter and release it as heat rather
than fluorescence, reducing the background signal. The TaqMan based RQ-PCR approach
is usually performed on the ABI sequence detection system (Applied Biosystems, Foster
City, CA USA).
When the PCR reaction has been completed, the sequence detection software plots the
measured fluorescence vs. the cycle number.(Figure 2B) This allows the calculation of a
threshold cycle (Ct) defined as cycle number at which the fluorescence passes a fixed
threshold. Samples with high copy numbers of target will reach the threshold value at
earlier cycles than samples with less target copies - i.e., lower Ct value for a higher
concentration. A standard curve can be generated from a serial dilution of a target with
known starting copy numbers (Ct values vs. concentration, Figure 2C). Quantification is
then performed by plotting the Ct value of an unknown sample on the standard curve.
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Figure 2. Realtime quantitative PCR. A. The Taqman probe is a oligonucleotide with a
fluorescent 5’-Reporter dye and a 3’-Quencher dye. As long as the probe is intact, the
reporter flurescence is quenched by the 3’-quencher dye. During polymerization, the probe is
hydrolyzed by the 5’-nuclease activity of Taq polymerase and the 5’-reporter dye is released,
yielding a signal. B. Amplification curves of serial dilution of a plasmid containing the BCR-
ABL gene. The increase in fluorescence on the y-axis is indicated as delta Rn. Based on the
background fluorescence, usually determined between cycles 3 and 15, a threshold line is
determined. This threshold is used to calculate the threshold cycle (Ct) of each sample. C. A
standard curve can be generated by the Ct values obtained from the amplification plot. The
Ct values of unknown samples are plotted in the standard curve for quantification.
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3.1.3 Fusion gene transcript analysis

Chromosomal abnormalities are present in 70-80% of the patients with AML and ALL
and in >95% of the patients with CML.98 These changes include gain or loss of
chromosomes, gene deletions or insertions, chromosome inversions, and balanced
chromosome translocations. Some of these abnormalities, especially the chromosome
translocations, are recurrent and have been associated with leukemogenesis.99 The fusion
of two genes after a translocation may result in a novel chimeric protein.
Chromosome abnormalities can be used as leukemia specific targets for MRD analysis.
Methods such as standard cytogenetics, southern blot and fluorescence in situ
hybridization (FISH) have been used to detect chromosomal abnormalities but these
techniques are associated with a low sensitivity (1-5%).100

With the PCR technique, it is possible to detect one leukemic cell among 105-106 normal
cells. PCR can be performed directly on DNA if both breakpoints in a particular
translocation cluster within a small region. However, in most cases, the translocation is
more complex because the breakpoints occur within a large intronic region. The
intervening segment of DNA between the primers will be too large to amplify. Therefore,
RNA transcripts of the fusion genes are usually used as templates for PCR amplification.

Table 3. Some chromosome abnormalities used as MRD targets
Disease Chromosomal abnormality Molecular target Frequency (%)
CML t(9;22) BCR-ABL 95

B-ALL t(9;22) BCR-ABL 5 (children)
20-30 (adults)

t(1;19) E2A-PBX1 5-10
t(4;11) MLL-AF4 2-5 (50-60 in infants)
t(12;21) TEL/AML1 10-25 (children)

1-3 (adults)

T-ALL TAL1 deletion Tal*
SIL-TAL

20-25

t(11;14) RBTN1/2-TCRδ* 5-10

AML t(8;21) AML-ETO 5-10 (20-40 in M2)
t(15;17) PML-RARα 5-10 (>95 in M3)
inv(16)/t(16;16) CBFβ-MYH11 5-10
t(9;11) MLL-AF9 1-10

*DNA as template, otherwise RNA (cDNA). References100-102

Applicability. The most common chromosomal abnormalities used for PCR analysis and
the frequency of these abnormalities are shown in Table 3. In CML, the Ph-chromosome,
t(9;22), is found in 95% of the cases and serves as an excellent MRD marker for this
disease. The Ph-chromosome, which is also found in ALL patients, is discussed separately
in the next section. In AML and ALL, there is no specific translocation associated with
disease. There are several numbers of translocations, which occur in 1-30% of all cases,
with larger frequencies in specific leukemia subtypes.
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Sensitivity and quantification. Because chromosome abnormalities are highly disease
specific, PCR amplification of the fusion gene transcripts can usually detect one leukemic
cell among 104-106 normal cells. If necessary, higher sensitivity can be obtained by the use
of “nested-PCR”, a two-step PCR with a second PCR reaction performed on the products
from the first PCR.
Quantification of the MRD target can be performed by comparing the PCR signal with
serial dilutions of a standard with known amount of target DNA or RNA, by limiting
dilution experiments,103 and by competitive PCR.97 However, with the introduction of RQ-
PCR, quantification can be performed more easily and accurately than semiquantitative
PCR analysis.104

Advantages and disadvantages. One of the major advantages of the PCR technique is the
high sensitivity. In addition, these translocations are leukemia-specific and stable during
the disease course.
The high sensitivity can be a problem if cross-contamination of RT-PCR products occurs,
leading to false-positive results. RNA degradation and variations in efficiency of cDNA
synthesis may also affect sensitivity of the method.

3.1.3.1 The Philadelphia chromosome, BCR-ABL

The Ph-chromosome was the first specific chromosome abnormality described in
leukemia.9 It is strongly associated with CML with an incidence of 95%. In ALL, the Ph is
found in 2-5% of childhood cases and in 20-30% of adult cases, the incidence of which
increases with age.105-108 Ph is also found in approximately 1% of AML cases.109

The Ph arises from a reciprocal translocation, t(9;22), that joins 3’ sequences of the ABL
gene on chromosome 9 to the 5’ sequences of the BCR gene on chromosome 22 (Figure
3).110 The break on chromosome 9 regularly occurs 5’ to the ABL exon 2 while the
breakpoints on chromosome 22 can differ. In most cases of CML, the breakpoints within
BCR occur in a region termed the major breakpoint cluster region (M-BCR) between
either exons 13 and 14 (b2a2) or exons 14 and 15 (b3a2). In both cases, the hybrid BCR-
ABL gene encodes a 210-kd chimeric protein (p210). In the majority of Ph-positive ALL
cases, the breakpoint occurs in the first intron of the BCR gene, the minor breakpoint
cluster region (m-BCR). This results in the expression of a p190 protein.
The vast majority of the CML cases possess the b2a2 and the b3a2 fusion types, with a
higher prevalence for the b3a2 type. Co-expression of b3a2 and b2a2 is possible and
detected in 5-10% of the CML cases. This is probably due to alternative RNA splicing and
the reason has been proposed to be a polymorphism within the BCR gene.111 In rare
occasions (<1%), the e1a2 fusion type only can be found in CML, but it is detected in
virtually all CML patients at the time of diagnosis and relapse, together with the other
fusion types.112-114 In Ph-positive ALL, the dominating fusion type is e1a2 with a
frequency of 60-70%. Different locations of breakpoints or alternative splicing may also
lead to other rare fusion types such as e19a2, b2a3, b3a3, e6a2.115,116
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Although the transforming potential of the BCR-ABL protein is well established, it is still
unclear how this protein exerts its transforming effects. The BCR-ABL protein has a
deregulated tyrosine kinase activity and is involved in the signal transduction pathways in
the cell. Some of the cell mechanisms affected by the BCR-ABL protein is altered
adhesion to stroma cells and extracellular matrix, constitutively active mitogenic signaling
and reduced apoptosis.110 Some data indicate that there are biological differences between
the p190 and p210 fusion types. The in vitro tyrosine kinase activity of p190 protein is
greater than that of p210.117 In addition, in animal models, the p190 fusion type appears to
induce leukemia that is more virulent than p210 leukemia.118,119 Clinical data in ALL
patients show that the p190 BCR-ABL transcript is associated with higher risk of relapse
after SCT compared to the p210 BCR-ABL transcript.120,121

The presence of the BCR-ABL translocation in a hematopoietic cell seem not in itself
sufficient to cause leukemia because BCR-ABL fusion transcripts are detectable in the PB

Figure 3. Schematic representation of the ABL and BCR genes and the BCR-ABL fusion
transcripts involved in the Philadelphia chromosome translocation t(9;22),. A. Boxes and
lines represent exons and introns, respectively. Breakpoint regions are indicated by arrows.
The breakpoints in the ABL gene are located in a large region 5’ of exon a2. In the BCR
gene, three breakpoint cluster regions (BCR) have been identified. B. Breakpoints in the
minor BCR (m-BCR) result in the e1a2 mRNA (p190 protein), which is usually found in Ph-
positive ALL. The major BCR (M-BCR) is located between exons e13 and e15 (b2 and b4).
The resulting b2a2 and b3a2 mRNAs and the encoded protein p210 are mainly found in Ph-
positive CML. A rare product, e19a2 (p230), results from breakpoints occuring in µ-BCR.
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of many healthy individuals.122,123 Using an optimized RT-PCR assay, with a sensitivity of
at least 10-7, the p210 and p190 type of transcripts were detected in 27% and 69% of the
normal individuals, respectively.123 It has been suggested that BCR-ABL in combination
with a “correct” primitive hematopoietic progenitor cell may be sufficient to cause CML.
Because of its high sensitivity and easy and rapid performance, RT-PCR has been
exclusively used for monitoring MRD in CML. BCR-ABL transcripts are stable over time
in individual patients and there is no convincing data showing that clonal evolution may
occur. Because qualitative PCR seems to have limited clinical value in CML patients after
therapy, quantitative PCR methods have been developed to monitor the kinetics of MRD
after SCT.

One important methodological aspect to the analysis of fusion gene transcripts is the use of
an internal control gene.124 Internal control genes (housekeeping genes, reference genes)
are constitutively expressed genes, which are used for quality control of the patient
samples. The yield and quality of RNA and cDNA can be highly variable. Usually, the
number of fusion gene transcripts (BCR-ABL) is normalized to the number of transcripts
of a control gene in order to compensate for variations that can occur between samples.
Some of the genes, commonly used as controls in RT-PCR assays, include glucose 6-
phosphate dehydrogenase (G6PD), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), ABL, BCR, beta-2-microglobulin (β2-MG), and porphobilinogen deaminase
(PBGD). The selection of a control gene can be complicated by the presence of processed
pseudogenes, nonfunctional and intronlacking genes with equal sequence length to
endogenous mRNA, leading to false positive PCR results by genomic DNA. Identification
of the appropriate control gene can be difficult and may need comparison analysis of
different genes.125

The ABL gene is a commonly used control gene in BCR-ABL analysis and considered as
a suitable control in different diseases.126-131 Results are expressed as a ratio between
BCR-ABL and ABL copy numbers (BCR-ABL/ABL). However, the use of the ABL gene
as a control gene in Ph-positive diseases is complicated by the fact that the total number of
ABL transcripts usually includes “normal ABL” + BCR-ABL. Thus, the BCR-ABL/ABL
ratio will not be correct in cases, in which BCR-ABL levels are high (lower ratio). This,
however, is a problem at relatively high BCR-ABL levels and will not have a major
impact on the results at the level of MRD.

3.1.4 Antigen receptor rearrangement analysis

During early B-cell and T-cell differentiation the germline variable (V), diversity (D) and
joining (J) gene segments of the immunoglobulin (Ig) and T-cell receptor (TcR)
complexes rearrange, and each lymphocyte thereby obtains a particular combination of V-
(D-)J segments (Figure 4). The huge diversity of antigen receptors is achieved by the
random recombination of one individual member of each of theses gene segments. The
addition and removal of junctional (“N”) nucleotides increases this diversity even more.
Therefore, the junctional regions of rearranged Ig and TcR genes, also called the third
complementarity determining region (CDR3), are unique sequences that are assumed to be
different in each lymphoid precursor. Because ALL cells are clonal proliferations of one
precursor cell, analysis of Ig and TcR gene rearrangements can be used as “DNA-
fingerprints” for each particular ALL.94,132
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In principal, all antigen receptor genes can be used as MRD targets, - e.g., Ig heavy chain
(IgH), Ig light chains kappa (IgLκ) and lambda (IgLλ), TcR alfa (TcRα), TcR beta (TcRβ),
TcR gamma (TcRγ) and TcR delta (TcRδ). The first step in the methodology of
rearrangement analysis is identification of junctional regions of Ig and TcR gene
rearrangements. Usually, this is done by PCR analysis of BM samples taken at the time of
diagnosis or relapse. Primer combinations, designed to conserved sequences flanking the
rearrangement region, are used to amplify the leukemia (clone) specific sequences. The
choice of primer combinations is complicated by the presence of large number of genes.
The IgH gene complex consist of ~200 VH-, 30 DH- and six JH-gene segments. The gene
segments can be grouped into subfamilies based on sequence homology and therefore the
number of primer combinations needed is reduced. The IgH rearrangement can be
identified by using only five VH family-specific primers in combination with one
consensus JH primer.133,134 The VH specific primers can be designed for all framework
regions (FR1, FR2 and FR3).
TcRγ and TcRδ gene rearrangements are also relatively easily analyzed by limited number
of primer combinations, but PCR analysis of IgLκ, IgLλ, TcRα and TcRβ requires more
primers.134 The detection of leukemia specific IgH/TcR rearrangements by PCR analysis is
therefore limited by the choice of primers.

Figure 4. A schematic representation of the IgH gene rearrangement. Rearrangement is
a two-step process: first D to J joining occurs, followed by V to D-J joining. Conserved
regions are grouped into three framework regions (FRs) and the most variable part of
the antigen binding site of immunoglobulins are grouped into complementarity
determining regions (CDRs) Similar gene rearrangements occur in other Ig and TcR
genes. The unique sequence of the CDR3 region is usually used to design patient-
specific primers and probes for MRD analysis.
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When the leukemia specific rearrangement is identified, different approaches can be
applied to monitor MRD in remission samples.
In “gene fingerprinting” analysis, the same primer combination used for identification of
the leukemia specific rearrangement is used to amplify remission samples.135 This single
step approach relies on the resolution of PCR products on a sequencing gel, which
provides single base separation and permits differentiation of clonal products from the
background produced by normal rearrangements. This technique is not sequence specific
and obtains a sensitivity of 10-3. Other methods like heteroduplex and single-strand
conformation polymorphism (SSCP) analyses are also based on differentiation of
monoclonal clones from polyclonal ones.136,137

In most strategies, the leukemia specific rearrangement is used to provide probes and
primers for MRD detection in remission samples. Usually, the leukemia specific
rearrangement is sequenced and when the different gene segments (V, D, and J) are
identified, oligonucleotides specific for the junctional regions are designed. These
oligonucleotides can be used as probes in hybridization experiments to detect PCR
products derived from follow-up samples. The other possibility is to use the
oligonucleotides as patient specific primers in PCR to amplify the leukemia specific clone.

Applicability. Due to the nature of the antigen receptor gene rearrangement analysis, this
method is restricted to lymphoid malignancies although Ig and TcR rearrangements have
been reported in ~10% of the AML cases.138 IgH and TcR rearrangements can be detected
in >95 of the ALL cases (Table 4). In ALL, IgH and TcR rearrangements are not lineage-
restricted and this is referred to as lineage infidelity or cross lineage rearrangements. Thus,
clonal rearrangements of TcR genes are seen in a large proportion of B-ALL and a smaller
proportion of IgH rearrangements are found in T-ALL.139 In addition to complete
rearrangements (V-J), incomplete rearrangements (V-D, D-D or D-J) are usually detected
in ALL cells, the occurrence of which seems to be age related.140

Table 4. Frequency and stability of Ig and TcR gene rearrangements.
Frequency at
diagnosis (%)

Target B-ALL T-ALL
Monoclonality at

diagnosis (%)
Stability at

relapse (%)*
IgH >95 20 60-70 65

VH-JH 95 5 70
DH-JH 20 20 40

Igκ 50 0 90 90
Vκ-Kde 45 0 90

Intron-Kde 25 0 85
TcRγ              (Vγ-Jγ) 55 95 60-65 75
TcRδ 40 55 60 60

Vδ2-Dδ3/Dδ2-Dδ3 40 5 60
Vδ-Jδ1/Dδ-Jδ1 1 50

*Higher stability rates (>80%) in monoclonal leukemias as compared to
oligoclonal leukemias (<50%). References134,141,142

Sensitivity and quantification. The detection limit of PCR analysis of junctional regions
generally varies between 10-4 and 10-6. The sensitivity is dependent on the type of
rearrangement and on the background of normal lymphoid cells with comparable Ig or
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TcR gene rearrangements.143,144 Normal cells can contain the same rearranged gene
segments as the leukemic cells with the only difference being the junctions with different
“N” nucleotides. Therefore, with a longer junctional region it is possible to get higher
primer specificity and thereby higher sensitivity. A “nested-PCR” approach can increase
sensitivity if needed.
MRD quantification by PCR analysis of IG and TcR gene rearrangements is basically
performed in the same way as quantification of fusion gene transcripts. Dilution series of
diagnosis DNA is generally used to determine the tumor load in follow-up samples.
Limiting dilution experiments and competitive PCR are other approaches that have been
used for quantification.96,145 However, the use of RQ-PCR has been increased and replaced
many of the standard time-consuming PCR analyses.104

Advantages and disadvantages. The main advantages of this method are the high
sensitivity and its applicable in virtually all ALL patients. The need to sequence junctional
regions and to develop probes and primers for each ALL case is time-consuming and a
limiting factor of the method.
The main disadvantage of using Ig and TcR rearrangements as MRD targets is that
continuing rearrangements can occur during the disease course.142,146-148 Such changes in
rearrangement patterns will lead to false negative PCR results. Rearrangement changes
between diagnosis and relapse are particularly observed in patients who show
oligoclonality at diagnosis (Table 4). Oligoclonality is defined as the development of
subclones from the primary leukemic cell and it is found in 30-40% of ALL cases.149 The
problem of oligoclonality is the uncertainty as to which clone is going to emerge at relapse
and which should therefore be monitored as a MRD target.150 Continuing IgH
rearrangements might also occur between diagnosis and relapse and is usually due to VH

replacements without changes in the DHNJH region.147,151 Therefore, primers specific for
the DHNJH region can be designed in order to prevent false negative PCR results. It is now
generally accepted that at least two Ig/TcR gene targets should be used for reliable and
sensitive MRD detection in ALL patients.

Some studies have made methodological comparisons between flow cytometry and
rearrangement analysis for MRD detection.88,152 High concordance was found between
both methods. Discrepant results were usually due to low sample cellularity or the
presence of PCR inhibitors.152

3.1.5 Chimerism analysis

The term chimera originates from the ancient Greek mythology and describes a mixed
biological creature with a lion’s head, a goat’s body and a serpent’s tail. According to the
medical terminology, a chimera state means a biological organism in which cell
populations originating from another individual are living, differentiating and functioning.
A chimera state can emerge spontaneously in twins during pregnancy when there is a
communication between the blood circulation of the two placentas. An artificial chimera
state can be developed by medical interventions, such as transplantation. After SCT, a
state of chimerism develops when donor cells in the graft reconstitute the hematological
and immunological system.153 However, in some cases, host cells of hematopoietic origin
survive the conditioning treatment and co-exist with donor cells. This state, which is



The methodology and significance of MRD detection after SCT

21

termed mixed chimerism, may be stable or transient. There are some terms describing the
chimeric status after SCT.154

- Donor chimerism (full chimerism, complete chimerism) means that all the circulating
hematopoietic cell populations are of donor origin.

- Mixed chimerism means that there is a mixture of donor and host cells in PB or BM.
- Split chimerism describes the situation when one cell lineage is of host origin and

another cell lineage is of donor origin - e.g., B-cells are host and T-cells are donor.
Mixed chimerism and split chimerism can be difficult to distinguish if chimerism
analysis is performed using whole blood without prior cell separation.

In chimerism analysis, the relationship between recipient and donor cells is investigated in
order to determine whether donor engraftment has occurred and if there are residual
recipient cells, which may be responsible for relapse.(Santos 72 Transpl Proc 559-) Per
definition, the chimerism analysis is not a MRD method because it does not specifically
detect leukemic cells. Residual recipient cells that are detected can either be normal or
malignant (or both). One way to overcome this problem is to perform leukemia lineage-
specific chimerism analysis.155-157 In this approach, follow-up sample cells are separated
according to the leukemia phenotype found at diagnosis. Thus, in a patient with B-ALL,
chimerism analysis is performed in B cells (CD19+ cells) which increases the specificity
and sensitivity of the method by reducing the irrelevant background.158,159

Different methods have been developed to monitor chimerism. Most of these methods
make use of polymorphic markers to differentiate between donor and recipient cells. Early
studies relied on techniques such as red blood cell phenotyping, cytogenetics, fluorescence
in situ hybridization (FISH) and restriction fragment length polymorphism (RFLP).154,160

Limitations of these techniques include limited degrees of polymorphism, low sensitivity,
and a requirement of a large number of cells.
The most widely used method for chimerism analysis is PCR amplification of short
tandem repeats (STR, microsatellites) and variable number of tandem repeats (VNTR,
minisatellites). VNTR and STR are repetitive DNA sequences dispersed throughout the
genome. The main difference between VNTRs and STRs is the length of the repetitive
sequence, 10-70 bp for VNTRs and 2-5 bp for STRs. These DNA sequences show a high
degree of polymorphism because the number of repeats can differ from one individual to
another. Therefore, PCR amplification of VNTRs or STRs will result in PCR products of
different lengths depending on the number of tandem repeats.(Figure 5). Before SCT, the
patient and donor pairs are “screened” with a panel of STRs or/and VNTRs to find
markers that can differentiate between patient and donor DNA. One or two suitable
markers are then used in the follow-up samples to monitor the chimeric status. PCR
products are separated and analyzed after gel electrophoresis. While PCR products from
VNTRs can be separated using low resolution agarose- and polyacrylamide gels (PAGE),
STRs with smaller allele differences are analyzed using high resolution capillary
electrophoresis and fluorescence detection.155,161-163

New approaches based on RQ-PCR have been developed for chimerism analysis. Because
VNTRs and STRs are not suitable markers for RQ-PCR analysis, single nucleotide
polymorphisms (SNPs) are used as polymorphic targets. This new approach seems to be
more sensitive than VNTR and STR analysis and appears promising for chimerism
analysis.164,165
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Applicability. Using a panel of 5-10 VNTRs/STRs, an informative marker can be
detected in >95% of the SCT cases.166 With five different VNTRs, we were able to find an
informative marker in all cases of MUD transplants and ~90% of the sibling transplants.
Due to differences in primer sensitivity and other methodological considerations, the
frequency of patients analyzed under optimal conditions will be decreased. For instance,
when using PCR to amplify VNTR, preferential amplification of small allelic products
relative to large allelic products has been reported.167 Therefore, when choosing an
informative VNTR, we preferred the marker that yielded a shorter PCR product in the
patient as compared to the donor. Also when using STRs, there are ideal allelic
constellations giving more specific and sensitive chimerism quantification.162

Sensitivity and quantification. PCR analysis of VNTRs/STRs amplifies both patients
and donor DNA, which means that there is a competition for primers and nucleotides in
the PCR reaction. Therefore, sensitivity is decreased as compared to PCR analyses where
patient/leukemic specific targets are amplified. The sensitivity for detecting the minor
population ranges from 1% to 10% but can be increased if cell separation is performed
before the PCR analysis. Using this approach, we have increased the sensitivity by more
than one log (4x10-4).155 High sensitivity (10-4-10-5) can also be achieved if Y-
chromosome specific sequences are used as PCR targets.168 However, this is only
applicable in sex-mismatched transplants, male patients with female donor. Initial studies
with RQ-PCR of SNPs report a sensitivity of 10-3-10-4 (unseparated cells).165

Quantification using VNTRs/STRs is based on the ratio of donor and recipient signals
after gel electrophoresis. In STR analysis with capillary electrophoresis and fluorescence
detection (ABI Prism 310 genetic analyzer), quantification is performed by calculating
different peak areas.156 Serial dilutions of pretransplant DNA into donor DNA can be
performed to construct standard curves. The ratio of donor and patient signals from
follow-up samples are then compared to the standard curve for quantification.169

Figure 5. Chimerism analysis using PCR ampliciation of VNTRs. The number of
repeats in a given VNTR can differ between one individual to another This will result
in PCR products of different length. After SCT, the allelic pattern will reveal the
relationship between recipient and donor cells.
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Advantages and disadvantages. The main advantage of the chimerism analysis is the
high applicability, regardless of the underlying disease. Analysis in different cell
population allows the investigation of the engraftment process, which is especially
important after nonmyeloablative transplants. Limitations of the method are the low
sensitivity and that it is not leukemia specific. As mentioned, these problems can be
overcome partly by cell separation. Higher sensitivity may be obtained with RQ-PCR
analysis of SNPs.165

3.1.6 Other markers

In addition to the most common methods described above, other genetic aberrations in
hematological malignancies can be used as MRD markers.
FLT3 (Fms-like tyrosine kinase 3) is a receptor tyrosine kinase important for the normal
development of stem cells and the immune system.170 Increased expression of this gene
has been reported in most of the AML and B-ALL cases.171 Analysis of FLT3 mRNA
levels can be used for MRD assessments, although this approach has not been widely
used. This may be due to background expression of FLT3 in normal cells.172 However, a
mutation in the FLT3 gene, an internal tandem duplication (ITD), has gained more interest
as a MRD target. This mutation involves duplication of an internal sequence, but
additional nucleotides are often randomly inserted, resulting in a patient specific target.
FLT-ITD is found in 20-30% of the AML cases and is associated with worse outcome.170

Recent studies suggest that FLT3-ITD may not be stable between diagnosis and relapse
and should therefore be used cautiously for MRD detection.173,174

Recently, a new translocation, t(5;14), has been identified in T-ALL with an incidence of
20-30%.104,175,176 As a result of the translocation, the HOX11L2 gene is transcriptionally
activated. HOX11L2 is not expressed in normal PB and BM and transcript analysis of this
gene with RT-PCR may be used for sensitive MRD detection.
High expression of the PRAME gene (Preferentially expressed antigen of melanoma) has
been detected in 40-50% of the leukemia patients.177

One of the new targets, which has been most widely used for MRD analysis is Wilms’
tumor gene (WT1). WT1 is a tumor suppressor gene coding for a transcription factor and
was originally identified for its involvement in the pathogenesis of Wilms’ tumor, a
childhood kidney neoplasm. High expression of WT1 has been shown at diagnosis in
ALL, AML and CML.178-181 Long-term monitoring of WT1 levels has been used to detect
an early relapse and predict the prognosis after chemotherapy or SCT.182,183 Based on
these results, WT1 has been reported as a “panleukemic” MRD marker. However an
association between WT1 expression and relapse, has not been found in some studies.184-

186 In a recent study, we showed that there is a high level of background expression of
WT1 in the PB of normal individuals.187 In addition, by comparing the kinetics WT1 with
that of BCR-ABL after SCT, we could conclude that an up-regulation of WT1 occurs at
the time of relapse, but the level and the time of increase are not sufficient to predict a
threatening relapse.

3.2 PERIPHERAL BLOOD OR BONE MARROW?

The use of PB to detect and quantify MRD in leukemia is more practical as compared to
the use of BM. BM aspirations are associated with pain and can not be carried out on



Mehmet Uzunel

24

regular basis, especially in children. Therefore, it would be beneficial if BM sampling
could be replaced by PB sampling. Studies comparing the incidence and level of MRD
between PB and BM have been performed for different types of leukemia.
In CML, most studies have reported a high degree of concordance in BCR-ABL levels
between PB and BM, suggesting that either PB or BM can be used for MRD
analysis.188,189

Recently, two large studies analyzed MRD levels in PB and BM in patients with
ALL.190,191 In one study, MRD levels were investigated in B-ALL and T-ALL patients
using PCR analysis of Ig and TcR rearrangements.190 In T-ALL, MRD levels in the paired
PB-BM samples were comparable and strongly correlated. However, in B-ALL, the
incidence and level of MRD was higher in BM as compared to PB. In 107 PB-BM pairs
with detectable MRD, MRD was detected in BM but not PB in 47 pairs. In 48 double-
positive pairs, the level of MRD was usually much higher in BM than in the corresponding
PB samples (up to 1000 times higher). In the second study, immunophenotype analysis
was performed for MRD detection.191 The difference in MRD distribution between B-
ALL and T-ALL was also shown in this study. In addition, it was shown that MRD
detection in PB of B-ALL patients was associated with a high risk of relapse. In T-ALL
but not in B-ALL, BM sampling might be replaced by PB sampling.
In Ph-positive ALL, BCR-ABL transcript detection in PB and BM seem to be
comparable.120,192 When discordance occurs, MRD levels in BM are usually higher than in
PB.193

In AML, no large studies have yet, to our knowledge, tried to compare MRD levels in BM
with those in PB. AML is a heterogeneous group of diseases and it is possible that MRD
distribution in PB and BM will be different in different AML subtypes. In patients with
inv(16) and t(8;21), MRD analysis in BM samples seems to be more sensitive than in
PB.129,194,195 However, in patients with t(15;17), PML-RARα transcript levels in PB and
BM have shown to be comparable.196

After SCT, analysis of BM samples have shown that stromal cells are of host origin while
the macrophage component of the adherent layer originate from the donor.197 Therefore,
chimerism analysis of BM samples may lead to false positive results by contamination of
recipient derived stromal cells.
Another problem related to BM sampling is nonhomogeneous distribution of leukemia in
BM.198,199 This means that the site of sampling may play a role in the incidence of false
negative results and incorrect MRD quantification.

3.3 CLINICAL SIGNIFICANCE OF MRD DETECTION
3.3.1 Acute Lymphoblastic Leukemia

Conventional chemotherapy. Several retrospective and prospective studies indicate that
analysis of MRD in ALL has prognostic value, both using immunophenotype and Ig/TcR
rearrangement methods. 101,102,141 Low levels or absence of MRD in BM after induction
therapy is associated with good outcome. In an extensive review of MRD analysis
performed in 856 children with ALL, published between 1994 and 1998, Foroni et al
showed that approximately 50% of childhood cases were MRD positive at the end of
induction therapy and 45% of these patients relapsed.102 Of the MRD negative cases, the
relapse incidence was 7.5%. MRD detection at later time points is also associated with
high risk of relapse.200-204 By combining MRD results from two time-points, different risk-
groups of patients can be identified.204 This approach appears to be superior, in terms of
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sensitivity and specificity, for predicting relapse, as compared to single time-point
analysis. A MRD threshold level of 10-4 seem to differentiate between patients at high risk
of relapse and those at lower risk of relapse.200,201,204

In adult ALL, the frequency and the level of MRD are significantly higher as compared to
childhood ALL.205,206 Adults respond to treatment more slowly and therefore the MRD
status at later time-points have shown to be more predictive for relapse.203,207 Similar
differences are found when comparing T-ALL and B-ALL.208 The frequency and the level
of MRD was found to be higher in T-ALL than in B-ALL, reflecting the greater
aggressiveness of T-ALL. However, in contrast to adult ALL, the prognostic value of
MRD in T-ALL was high even at early time-points.

SCT.
MRD analysis before SCT. Many ALL patients transplanted in CR still relapse, which
indicates the presence of leukemic cells, not detected by standard morphological analysis.
Therefore, MRD studies before SCT have been performed in order to identify patients
with persistent disease at levels below the remission threshold. Most of these studies
showed that patients with persistent MRD before SCT were at higher risk of relapse as
compared to MRD negative patients.209-212 Furthermore, a GVL effect was usually
observed in MRD positive patients who remained in CR. GVHD was shown to protect
against relapse,210,211 while T-cell depletion was associated with high risk of relapse in
patients with high MRD levels.209 Based on these results, a multicenter study has been
initiated to evaluate the role of pre-SCT MRD in prospective studies by adopting a
common protocol for MRD assessment.213

MRD analysis after SCT. All studies of MRD after SCT clearly show that MRD negativity
is a good predictor of remission in patients with ALL.82,83,214-216 However, the clinical
significance of MRD positive samples is less clear. While most studies have found a
strong correlation between MRD positivity and relapse,83,214-216 regardless of the MRD
quantity, some studies report a high frequency of MRD positive patients who do not
relapse.82,217 The median time interval between a positive MRD signal and relapse has
varied between 1 month and 5.5 months in different studies.83,214,216

MRD analysis in Ph-positive ALL. RT-PCR analysis for BCR-ABL transcripts after SCT
has been reported in Ph-positive ALL patients.120,121,218-220 A strong association between a
positive PCR assay and relapse was found in most of the studies although a high
proportion of MRD positive patients without relapse has been reported. In a recent study
by Stirewalt et al, 33 patients showed MRD positivity of which 15 (45%) relapsed.121

Among 31 patients without MRD, the relapse incidence was 23%. Interestingly, patients
with p190 BCR-ABL had an increased risk of relapse compared to those with p210 BCR-
ABL.
Induction of GVHD by either DLI or rapid reduction of immunosuppression has been
shown to induce molecular remission in ALL patients with residual BCR-ABL
transcripts.81

3.3.2 Acute Myeloid Leukemia

The lack of widely expressed molecular markers in AML limits the systematic study of
MRD by PCR. Therefore, correlative studies between MRD and treatment outcome have
been performed only in selected groups of patients.
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Conventional chemotherapy. In AML patients with t(15;17) and inv(16), high levels of
MRD after consolidation or completion of therapy is associated with an increased risk of
relapse.196,221,222 The significance of detecting MRD in AML t(8;21) patients is less clear
because AML1-ETO transcripts can be detected by qualitative RT-PCR in many patients
in long-term remission.223 This may be due to expression of AML1-ETO in normal
hematopoietic cells.224 However, quantitative monitoring of MRD have been shown to
identify patients with a high risk of relapse.129,225 MRD thresholds of predictive value have
been identified for all three chromosome aberrations.226 MRD studies using flow
cytometry have also shown to be of clinical value.227-229

SCT. After SCT for AML, very few MRD studies have been reported. In addition, most of
these studies have usually included a small number of patients. PCR analysis of fusion
gene transcripts have been used in some studies, but the clinical significance of MRD
detection is still not clear.194,230,231

Recently, Ogawa et al reported that quantitative analysis of the WT1 gene transcript could
be useful for predicting relapse in ALL and AML patient after SCT.183 However, this has
not been confirmed by others.185

3.3.3 Chronic Myeloid Leukemia

Interferon-α (IFNα). INFα treatment is an effective cytoreductive therapy in early
chronic phase CML and may induce complete hematological remission in 70-80% of the
cases.232 IFNα is the preferred therapy for patients without an available SCT donor.
Qualitative RT-PCR is of very limited value in determining response to INFα, because
almost all patients remain repeatedly positive.126 However, by using quantitative PCR
analysis, it is possible to identify patients at higher risk of relapse.233

SCT. The initial MRD studies after SCT were performed using qualitative “nested” RT-
PCR. It was found that BCR-ABL transcripts could be detected in most patients for some
months after SCT. Patients who were persistently MRD negative, especially more than 6
months after SCT had a very low risk of relapse.234 Long persistent MRD could be
detected in some patients with increased the risk of relapse.235,236 A GVL effect in CML
was evident by the fact that MRD detection was more common in patients with less severe
GVHD and that T-cell depletion was associated with higher incidence of MRD and
relapse.237,238 Using qualitative MRD analysis it was also shown that MRD could be
detected several months before relapse although this approach could not predict relapse for
individual patients.239

With the introduction of quantitative PCR methods, the kinetics of BCR-ABL transcripts
could be followed in more detail.97,127,240 Serial quantitative RT-PCR analysis can
distinguish patients who will most probably relapse (high or increasing BCR-ABL levels)
from those who will remain in clinical remission (low or decreasing BCR-ABL
levels).241,242 Using ABL as the internal control gene, molecular relapse has been defined
as a BCR-ABL/ABL ratio of >0.02% in 3 consecutive samples.128 DLI treatment at the
time of molecular relapse is associated with higher response rates as compared to DLI
given at the time of hematological relapse.77,79

Imatinib. The tyrosine kinase inhibitor imatinib has been used in clinical trials for only a
few years and long term results are still rare.243 Preliminary results suggest that  the use of
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imatinib is a considerable improvement over INFα. However, as in the case of INFα
treatment, BCR-ABL transcripts are detected in almost all patients after imatinib
treatment.244-246 Whether MRD negativity will be obtained with a longer follow-up
remains to be seen.
A high incidence of MRD and relapse is found after imatinib treatment in patients with
Ph-positive ALL.247

3.3.4 Chimerism results

Chimerism testing is used for routine analysis of engraftment after SCT and has been of
great value for this purpose. Successful engraftment is associated with stable complete
donor chimerism (DC). Whether chimerism analysis can be a useful tool for predicting
relapse has been a matter of debate.160,248-252 Although some studies have shown an
association between detection of mixed chimerism (MC) and relapse,155,157,161,169,253,254

others have failed to find such a correlation.255-259 These conflicting results in the literature
may be explained by a number of factors.

The time and frequency of sampling are important factors that influence the detection of
MC. During the early posttransplant period, most patients will show some degree of MC.
Investigating the kinetics of engraftment, Dubovsky et al showed that DC was usually
achieved by day 28 after SCT.260 Although, frequent sampling during this early time
period may lead to a high incidence of MC without an association with relapse, it may be
more valuable at later time points. Serial and quantitative chimerism analysis of samples
taken at short intervals after SCT has been useful for prediction of relapse.169,253

T-cell MC is usually detected after SCT and can persist for some months after SCT.261

While no clear association between T-cell MC and relapse have been found in acute
leukemia patients, higher incidence of MRD positivity and relapse has been found in CML
patients with T-cell MC.238,255,262 This is probably due to the GVL effect of T-cells, which
is stronger in CML than in acute leukemia. Because GVHD and GVL are closely related,
we investigated whether T-cell MC was associated with GVHD and relapse.261 We found
that T-cell MC was significantly correlated to a decreased risk of acute GVHD. However,
no association between T-cell MC and relapse was detected. A high incidence of MC,
especially in T-cells, is found after T-cell depleted transplants and correlates with a higher
risk of relapse in CML patients.238,263

PCR analysis of VNTRs and STRs yield similar sensitivities, 1-5%. In some studies, PCR
analysis of Y-chromosome specific sequences has been performed in sex-mismatched
transplants (female to male). This approach increases the sensitivity of the chimerism
method by at least two logs, to 10-4-10-5.168,264,265 Using this methodology, MC can be
detected at low levels (10-4), several years after SCT.266 Whether these recipient cells are
long-lived normal hematopoietic cells, malignant cells or contaminating non-
hematopoietic cells in the samples is not known. Fehse et al showed that the level of MC
was higher in BM compared to PB, which may indicate the presence of host-derived cells
- e.g., stroma cells, collected during BM sampling.267 They also showed that complete DC
could be achieved after cell sorting.

Most chimerism studies have been performed using DNA samples obtained from whole
PB or BM without prior cell separation. This approach has the disadvantage that
sensitivity is limited to 1% if VNTRs/STRs are used. In addition, if MC is detected, the
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identity of the recipient cells will not be known - i.e., whether detected recipient cells are
potential malignant cells or not. Therefore, in recent years, the immunophenotype of the
original leukemic clone have been used for FACS or immunomagnetic separation of
specific cell populations expected to harbor tumor cells. After cell separation, the
sensitivity and specificity of the chimerism analysis for detecting MRD are increased by
reducing the irrelevant background of other cell types. This approach has been
successfully applied in ALL, AML, and CML patients.112,155,157,159 In addition, lineage-
specific chimerism analysis may be useful in predicting response to DLI, as shown in
some studies.268-270

Studies reporting the use of adoptive immunotherapy based on chimerism results are
rare.84,271 In one study, Bader et al reported 12 patients with increasing MC who received
further immunotherapy consisting of either withdrawal of immunosuppression or DLI.84

Seven of these 12 patients responded to the treatment and remained in continuous CR. At
the Center for Allogeneic Stem Cell Transplantation (CAST) at Huddinge University
Hospital, adoptive immunotherapy based on chimerism results have started to be a routine
procedure, but the results are too preliminary to evaluate.

3.3.5 MRD and chimerism after nonmyeloablative SCT

In leukemia patients, the conditioning treatment given before SCT is meant to eradicate
recipient hematopoietic cells, normal and malignant cells. Therefore, less intensive
nonmyeloablative conditioning regimens are expected to give higher incidence of MC and
MRD after SCT. Indeed, MC has been detected in most patients after nonmyeloablative
SCT.24,154,272-274 In most cases DC is obtained after a transient MC while in other cases
further immunotherapy is needed for conversion from MC to DC.273,275 While MRD data
are rare in AML and ALL patients,276 some studies have focused on chimerism and MRD
monitoring in CML patients.277-280 Following nonmyeloablative SCT (NST), we studied
the kinetics of MRD and chimerism in CML patients.278 These results were compared with
those obtained from CML patients receiving conventional SCT (CST). In the early
posttransplant period (<3 months), we found a higher incidence of MC and MRD in NST
patients compared to CST patients. However, during the first year, most NST patients
achieved DC and molecular remission. Similar MRD and chimerism results after NST
have been reported by others.277,279

3.4 CONCLUSIONS

Leukemia relapse remains an obstacle to successful treatment with chemotherapy and
SCT. Many patients who achieve remissions will still relapse, indicating the presence of
leukemic cells not detected by morphological analysis. Therefore, different methods have
been developed for MRD assessments. The most sensitive and widely used methods are
based on PCR technology. These MRD methods depend on analysis of leukemia-specific
translocations, antigen receptor rearrangements and chimerism analysis. In CML patients,
the most widely used MRD method is RT-PCR analysis of BCR-ABL transcripts that can
be applied in >95% of the cases. In ALL patients, analysis of antigen receptor
rearrangements is possible in almost all patients. In addition, BCR-ABL transcript analysis
can be performed in 5-30% of the ALL cases. AML patients are a heterogeneous group of
patients, and there is yet no widely applicable MRD-PCR method for this patient group.
Analysis of fusion gene transcripts can be applied in 30-40% of the AML cases.
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Chimerism analysis can be performed in most patients after SCT. Although not leukemia
specific, the sensitivity and specificity of this method to detect MRD can be enhanced by
cell separation.
During the last decade, MRD analysis has become an important tool in the management of
leukemia patients. In many studies, MRD detection has been shown to be an independent
prognostic factor for patient outcome. However, there is still some controversial whether
MRD results should be used in clinical decision-making. Different factors may contribute
to the conflicting results found in different studies.
1. Patient population. The patient group under study may have an effect on the clinical

outcome in relation to MRD results. For instance, adult patients with ALL respond to
treatment more slowly than children and therefore the MRD status at later time-points
have shown to be more predictive for relapse in adult ALL. The value of a MRD
positive sample can also differ in subgroups of ALL - e.g., Ph-positive ALL.

2. Transplant regimens. The type of conditioning regimen and the type of graft given may
affect the incidence of MRD and chimerism after SCT.258,281,282 In ALL patients who
are MRD positive at the time of SCT, T-cell depletion increases the risk of relapse
considerably as compared to non-T-cell depleted graft. The use of PB as stem cell
source has been associated with lower incidence of MC and MRD as compared to
BM.283,284

3. Sensitivity of the method used may have a major impact on the predictive value of
MRD detection. Using optimized methods, MRD has been detected in the majority of
ALL patients in long-term clinical remission.285 In addition, increased sensitivity may
allow detection of fusion gene transcripts (Ph-chromosome and t(8;14)) in normal cells.
A sensitivity of at least 10-4 is usually recommended for MRD analysis.

4. Qualitative vs. Quantitative MRD analysis. In CML patients, a qualitative MRD
analysis is of limited value and does not allow identification of individual patients.
BCR-ABL transcripts can be detected in virtually all patients after INF-alfa and
imatinib treatment and in most patients during the early posttransplant period.
Quantitative MRD analysis allows the identification of individual patients at high risk
of relapse. In addition, quantitative analysis provides the possibility to find threshold
values, which may differentiate between patients at high risk of relapse and those who
will most probably remain in CR.

5. Time and frequency of sampling. MRD analysis at a single time point is usually not
sufficient to identify patients with poor prognosis. A combined MRD information from
different time points after treatment allows kinetic studies of tumor load and appears to
be highly informative. In the early time period after SCT (~3 months), MRD can be
detected in some ALL patients who will remain in clinical remission. Therefore, MRD
positivity during this time period might not be associated with increased risk of relapse.
Serial and quantitative MRD analysis is probably the best approach for identifying the
majority of those patients who will relapse.

The currently used MRD assays are heterogenous as regards to the markers and techniques
used in the analysis. In a routine laboratory, a combination of these methods is needed in
order to make MRD analysis available for most patients. This requires skillful personal
and different equipment and materials. Despite this, a sensitive MRD target will not be
found in all patients. The search for new MRD markers may allow identification of
markers that can be used across different leukemia types. In this sense, it has been
suggested that WT1 may be a used as a panleukemic MRD marker. However, studies on
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WT1 have produced conflicting results and the clinical significance of this marker is still
controversial.
The development of cDNA array technology has enabled the study of expression of
thousands of genes in a single experiment. This technique has the potential to identify
novel markers for MRD analysis. Chen et al compared the gene profiles of normal and
leukemic cells and found 7 proteins that were increased in B-ALL at higher levels than in
normal B-cell progenitors.286 Further analysis of one of the markers, CD58, showed that it
may be useful as a MRD marker in immunophenotype analysis.226

The use of cDNA arrays has also produced clinically relevant results in leukemia patients.
It has been demonstrated that AML and ALL can be distinguished by gene expression
profiles.287-289 In childhood ALL, it was even possible to correlate molecular aberrations
(translocations) with distinct gene expression profiles.290 It has also been shown that
patients with resistance to STI571 can be identified exclusively according to their gene
expression profile.291 The cDNA array methodology may contribute to the identification of
new prognostic factors but also potential targets for molecular therapies.

Finally, standardization of MRD protocols is necessary in order to come to a consensus on
the significance of MRD detection for each type of disease and treatment. With the
introduction of RQ-PCR, this may be easier to achieve than before. In Europe, several
protocols have been established to develop common guidelines for MRD analysis. Some
of these networks include the Europe Against Cancer Program (RQ-PCR analysis of
fusion gene transcripts), the European Study on MRD Detection in ALL, the International
Study Group on Standardization of Residual Disease Detection in BCR-ABL positive
leukemias, and the European Study Group for MRD analysis in SCT for ALL.213
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4 AIMS OF THE PRESENT STUDY
The overall aim was to analyze the clinical significance of MRD detection in leukemia
patients treated with SCT. Some of the specific aims were:

♦ To investigate the predictive value of chimerism analysis for relapse after SCT.

♦ To analyze the clinical significance of MRD detection before and after SCT in patients
with ALL.

♦ To analyze the kinetics of MRD and mixed chimerism in CML patients receiving a
nonmyeloablative SCT.

♦ To evaluate WT1 as a MRD marker.
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5 MATERIAL AND METHODS
In this section, different aspects of the methods used will be discussed. Details regarding
the methodological protocols will only be described if they are not presented in the papers
in which they are used.

5.1 PATIENTS AND TRANSPLANTATION

The local ethics committee at Huddinge University Hospital approved the studies in
Papers I-V (DNR 63/96 and 194/01). Patient characteristics in are given in Table 5.

Table 5. Patient and donor characteristics in Papers I-V
Paper I II III IV V
No. of patients 30 30 32 10

(CST)
15

(NST)
32

Females/males 19/11 13/17 13/19 4/6 10/5 17/15
Median age, years
Range

33
0.6-54

13
2-53

11
2-53

42
31-52

51
36-63

38
3-63

Median follow-up, months
Range

30
16-47

39
13-119

65
(37-144)

25
9-34

20
6-29

16
3-43

Diagnosis AML 22 ALL 30 ALL 32 CML 10 CML 15 CML 28
MDS 6 ALL 3
Others 2 AML 1

Disease stage
    Early/Advanced 1 9/21 16/14 15/17 10/0 15/0 27/5
Donors
    Females/Males 19/11 12/18 13/19 5/5 6/9 11/21
    HLA-identical siblings 10 15 15 2 10 11
    HLA-identical related 2
    Matched Unrelated 18 15 17 8 5 21
Conditioning
    Cy+TBI 22 26 29 5 11
    Bu/Cy 8 4 3 5 9
    Flu+Bu 15 10
    Flu+TBI 2
    ATG 20 16 18 8 15 27
GVHD prophylaxis
    CsA 2 2 3
    CsA+MTX 30 27 29 9 11 26
    CsA+MMF 1 1 5
    MTX 1 1
    + T-cell depletion 3 2 2 1
1early = 1 CR/CP; CST = Conventional SCT; NST = Nonmyeloablative SCT

5.2 CHIMERISM ANALYSIS

For chimerism analysis, five different VNTRs were used. Primer sequences and other data
concerning these VNTRs are shown in Table 2 (Paper I). Using these VNTRs, we were
able to find an informative marker in all MUD transplants and ~90% of the sibling
transplants. If several markers were informative, we usually selected the one that gave a
shorter allele in the patient as compared to the donor. This is due to preferential PCR
amplification of small allelic products relative to large ones.
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DNA samples from donor and patient, taken before SCT, were used as markers and
analyzed together with the post-SCT samples (Figure 6). Cell separation was performed in
all samples taken after SCT using immunomagnetic beads. Cell separation of CD19+ and
CD3+ cells was performed first and thereafter separation was performed according to the
leukemia immunophenotype of each patient. The different cell fractions were subjected to
cell lysis and chimerism analysis was performed directly on the cell lysate without prior
DNA extraction because of the risk of loosing DNA material from the few patients cells
present in the sample. Cell lysate DNA could be safely reanalyzed 4-5 times, including
freezing-thawing in-between subsequent analyses. After 10-12 repeated freeze-thawings of
the same lysate sample, fragmentation of template DNA was observed.
PCR amplified products were run on a ready-to-use polyacrylamide gel (PAGE) system
(Pharmacia Biotech, Uppsala, Sweden) and analyzed after an automated silver staining
procedure. This automated system gave high reproducibility. We used a semiquantitative
estimation of mixed chimerism where recipient-band intensity and donor-band intensity
were compared to a serial 10-step (nonmyeloblative SCT, 10%, 20%…100%) or 4-step
(myeloablative SCT, 1%, 5%, 20% 50%) dilution assay by mixing patient and donor
DNA.

5.3 ANTIGEN RECEPTOR REARRANGEMENT ANALYSIS

PCR amplification of IgH genes in ALL patients was done using a degenerate primer
complementary to framework three (FR3) of the variable (VH) gene-segments (5’-ACA
CGG CTG TGT ATT ACT GT-3’), together with a consensus joining (JH)1-6 gene-
segment-primer (5’-AAC TGC AGA GGA GAC GGT GAC C-3’). Primers for other Ig
and TcR genes were designed according to Pongers-Willemse et al.133 DNA was extracted
from leukemia cells obtained at diagnosis and screened for rearrangement targets. PCR
products were electrophoresed and single bands were excised from preparative 2% GTG
agarose gels. Excised bands were purified using the QIAquick Gel Extraction Kit
(QIAGEN, Hilden, Germany), according to the manufacturer’s guidelines. Purified PCR
products were ligated into TA vectors and subsequently transformed into competent cells
as described in the pGEM-T Easy Vector System 1 protocol (Promega, Madison, WI,
USA). Plasmids from 10 independent clones were purified using the Plasmid Mini Kit
(QIAGEN, Hilden, Germany), and unidirectionally sequenced with a T7 vector-specific
primer, using the ABI prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit

Pat Don CD19 CD3 CD13

Figure 6. Chimerism analysis. Patient and Donor DNA samples were screened
before SCT to find an informative marker. After SCT cell separation has been
performed with immunomagnetic beads for CD19+, CD3+ and CD13+ cells. This
patient show mixed chimerism in the CD19+ and CD3+ cell fractions but the
CD13+ cell fraction is complete donor chimeric.
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(Perkin Elmer, Branchburg, CA, USA). Sequences were analyzed on a 373A DNA
sequencer (Applied Biosystems, Foster City, CA, USA). The predominant nucleotide
sequence derived from the various plasmid clones of each patient was studied. In most
cases, all 10 clones displayed identical sequences. The sequence from the N-regions of
rearranged VDJ genes was used to accommodate the 3’-end of the patient-specific primer
used for each patient. Patient-specific primers were then used in combination with one of
the original primers used to identify leukemic DNA. PCR-amplified specific products of
80-120 bp size were analyzed on the same PAGE system as described for VNTR analysis.
Quantification was performed by parallel amplification of 1 µg of sample DNA with a 10-
fold serial dilution of leukemic cell DNA in mononuclear cell DNA from 5 healthy donors
(Figure 7). All samples were amplified in duplicate together with negative controls.
Most of the DNA material used in the rearrangement analysis was extracted from archival
BM slides by a salting-out procedure as described in Paper III. The simple and rapid
extraction method we used in this study usually gave DNA of high quality. Purity and
concentration was estimated from the optical density ratio (OD260/OD280) and DNA
quality was analyzed by successful PCR amplification with a VNTR marker.

5.4 COMPETITIVE PCR FOR BCR-ABL

Before the introduction of RQ-PCR, quantitative analysis of BCR-ABL transcripts was
performed by a competitive PCR approach (Paper IV). This method was adopted from
Cross et al,97 and the plasmids containing the competitor genes were kindly provided by
the same group at Hammersmith Hospital, London.
The methodology of RNA preparation and reverse transcription (RT) is described in Paper
V. However, details about the competitive PCR technique are not included in Paper IV
due to a major revision and are therefore described below.
Qualitative PCR. 5 µl of cDNA (total volume of 50 µl) was used in a 25 µl PCR-reaction
containing 1x PCR buffer (10mM Tris-HCl pH 8.3, 50mM KCl, 1.5mM MgCl2, 0.001%
gelatin), 200 µM of each dNTP (Applied Biosystems, Roche, Branchburg, NJ, USA), 5%
glycerol (Sigma, St.Louis, MO, USA), 100 ng/µl cresol red (Sigma), 0.03 units/µl
AmpliTaq polymerase (Applied Biosystems) and 0.5 µM of each primer. The primers
amplified both b2a2 and b3a2 variants of the p210 fusion product. Primer sequences were
B2A: 5’-TTC AGA AGC TTC TCC TGA CAT-3’ and CA3-: 5’-TGT TGA CTG GCG
TGA TGT AGT TGC TTG G-3’. Patients with the p190 fusion product was analyzed with
the primers E1N+: 5’-AGA TCT GGC CCA ACG ATG ACG A-3’ and CA3- (see above).
After an initial 4 min hot-start/denaturation step at 94 0C, 40 PCR amplification cycles
were carried out in a PTC-200 thermal cycler (MJ Research, Watertown, CA, USA). The
first 10 cycles were done in a two-segment step at 94 0C for 30 s and at 61 0C for 1 min.

10-1 10-2 10-3 10-4 Sample H2O

Figure 7. PCR analysis IgH gene rearrangement with patient-
specific primers. Semiquantitative analysis with a 10-fold
dilution series of leukemic DNA. The intensity of the sample
bands are compared to the dilution series for quantification.
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The following 30 cycles were done in a three-segment step at 94 0C for 15 s, 59 0C for 50 s
and 72 0C for 30 s. The primers used to detect ABL transcripts were A4-: 5’-CGG CTC
TCG GAG GAG ACG ATG A-3’ and A2N: 5’- CCC AAC CTT TTC GTT GCA CTG T-
3’. PCR conditions for ABL were 94 0C for 4 minutes followed by 35 PCR amplification
cycles. The first 10 cycles were done in a two-segment step at 94 0C for 30 s and at 66 0C
for 1 min. The following 25 cycles were done in a three-segment step at 94 0C for 15 s, 63
0C for 50 s and 72 0C for 30 s.
Five µl of the PCR products was run in a ready-to-use PAGE system as described above.
Competitive PCR. Quantification was done by a competitive PCR using plasmid
constructs containing a modified BCR-ABL fusion gene that produces larger PCR
products of ABL and BCR-ABL than the wild-type transcripts (Figure 8).
PCR reactions were performed as described above, except that 2.5 µl of cDNA and 2.5 µl
of competitor were added to each reaction. Dilutions of competitor plasmids were done
every half order of magnitude ranging from 10 to 107 copies per 2.5 µl. BCR-ABL and
ABL transcript numbers were estimated by comparing the competitor and sample band
intensity to find the equivalence point. Results were expressed as the ratio between BCR-
ABL and ABL transcript numbers (BCR-ABL/ABL).

ABL transcript levels were quantified also in the BCR-ABL negative samples to ensure
that the absence of BCR-ABL was not due to poor sample quality. ABL levels of >104.5

copies was considered to indicate good sample quality in BCR-ABL negative samples. In
most cases, PB or BM samples were processed on the same day of or the day after
sampling. Samples, which consisted of 5-10 ml of PB and 1-3 ml of BM, were usually
sufficient except during the early posttransplant period when the cell yield was sometimes
lower than desired.
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Figure 8. Sensitivity and methodology of the quantitative RT-PCR technique. A. RNA
from K562 cells (b3a2) was serially diluted in RNA from HL-60 cells in a total amount
of 20 µg RNA. After cDNA synthesis and 40 cycles of PCR amplification, PCR
products were visualized after a silver staining procedure. M: 50bp marker, (-):
Negative control included at the RNA extraction step. B. Samples were co-amplified
with different amounts of the competitor plasmid (comp.) to estimate the number of
BCR-ABL and ABL transcripts in the sample. Arrows indicate the equivalence point
in band strength between sample and competitor bands. Thus, the BCR-ABL/ABL
ratio is (102.6x1.22)/(105.2x1.26)=0.002 (0.2%). Multiplication by 1.22 and 1.26 is done
to compensate for size differences between the competitor and sample PCR products.
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5.5 REALTIME PCR

In Paper V, we used RQ-PCR to compare the kinetics of BCR-ABL with that of WT1
after SCT. Primers and protocols are described in this paper. The method was based on
Taqman probe technology and performed on the ABI 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA, USA). FAM and TAMRA were used as reporter
and quencher fluorochromes, respectively. Primers and probes were designed using the
Primer Express software (Applied Biosystems) and the length of the PCR products were
80-100 bp. This method has worked very well without any major optimization efforts
(Figure 2).
When the RQ-PCR method was optimized, we wanted to see whether the BCR-ABL/ABL
ratios derived from this method were comparable with those obtained by the competitive
PCR approach.240,292 As shown in Figure 9A, there is a high degree of correlation between
both methods. Some samples that were tested BCR-ABL negative by one method were
found to be positive by the other method. This comparison is complicated by the fact that
samples were not analyzed by both methods simultaneously. cDNA samples analyzed
with the competitive PCR methods had in some cases been stored in the freezer for 2 years
before they were analyzed by the RQ-PCR method.
In addition to the internal control gene ABL, we also quantified the level of G6PD
transcripts by RQ-PCR. In 241 samples, the ABL and G6PD levels correlated with r =
0.55, p<0.0001 (Figure 9B). G6PD levels were a median of 8.2 times higher than ABL
levels. This difference is higher than found by Emig et al, who reported a median
G6PD/ABL ratio of 1.5.240 The discrepancy between both studies might be due to
differences in primer and/or probe efficiencies in one or more targets.
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Figure 9. A. Comparison between BCR-ABL/ABL ratios obtained from competitive
PCR and RQ-PCR. Broken lines indicate the threshold for MRD negative samples.
Figures show the number of samples. B. Correlation between the internal control genes
ABL and G6PD. Copy numbers were estimated from standard curves of each gene,
generated during RQ-PCR.
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6 RESULTS AND DISCUSSION
6.1 CHIMERISM ANALYSIS AFTER CELL SEPARATION (PAPER I)

In this paper, we prospectively analyzed the clinical effect of MC detection in PB and BM
of 30 patients with AML and MDS after SCT. In all patients, cell separation, according to
the leukemia phenotype expressed at diagnosis or relapse before SCT, was performed on
samples after SCT. Twelve patients relapsed after SCT. Mixed chimerism in the leukemia-
affected cell lineage was detected in 14 patients, of whom 10 relapsed compared to 2 of 16
DC patients (p<0.01). The four patients with MC and continuous complete remission
showed only MC in BM. All eight patients with MC detected in PB relapsed compared to
4 of 22 DC patients (p<0.001). In this study, MC was detected median 66 (23-332) days
before hematological relapse. No correlation was found between MC in CD3+ and CD19+
separated cells and relapse. At the time of reappearance or continuous MC in patients who
later relapsed, all patients were considered to be in CR, according to morphological
examination. This shows the low sensitivity of the latter method for predicting relapse in
patients with AML and MDS after SCT.
Several studies have now shown that chimerism analysis in different leukemia-affected
cell lineage is a sensitive method, which identifies patients at risk of a threatening relapse
several months before the clinical relapse is verified morphologically.156,157,159 We believe
that chimerism analysis, taking samples at short intervals after SCT combined with
accepted MRD methods, will provide the tools necessary for treatment with adoptive
immunotherapy at an earlier time after SCT than today.

6.2 MRD IN ACUTE LYMPHOBLASTIC LEUKEMIA (PAPERS II & III)

In Paper II, we retrospectively analyzed MRD in 30 patients with ALL.The aim was to
determine whether the level of MRD before SCT was correlated with outcome after SCT.
For MRD detection, the junctional regions of Ig and TcR gene rearrangements were
amplified and sequenced, and patient-specific primers were constructed for each patient.
Quantification was performed by parallel amplification of pre-SCT DNA with a 10-fold
serial dilution of leukemic cell DNA in normal DNA. Fifteen patients had high-level MRD
(10-2-10-3), 10 low-level MRD (10-4-10-5) and 5 were MRD negative. The number of
relapses in the three groups were 8 (53%), 5 (50%), and 0, respectively.  Among patients
with both acute and chronic GVHD, only 2 of 15 relapsed compared with 11 of 15 in
patients without or only acute and chronic GVHD (p< 0.003).
Previous to our study, Knechtli et al had reported a relapse incidence of 100% in patients
with high-level MRD, about 50% in those with low-level MRD and about 20% in MRD
negative patiens.209 The higher relapse incidence found among patients with high level
MRD in their study may be because most of their patients received a T-cell depleted graft.
GVHD, which is a T-cell mediated disease, was shown to protect against relapse in our
study. In a study by Bader et al, it was also shown that not all patients with high level
MRD before SCT had a relapse after SCT.211 This was probably due to a GVL effect.220

In paper III, MRD was analyzed after SCT in 32 patients with ALL. MRD detection and
quantification were performed in the same way as in Paper II. Twenty-seven patients from
Paper II were also included in this study. MRD after SCT was detected in 9 patients of
which 8 relapsed as compared to 6 relapses among 23 MRD negative patients (p< 0.01). In
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the 8 patients with positive MRD results before relapse, the median time between first
MRD detection and relapse was 5.5 (range 0.5-30) months.
In this study, MRD detection after SCT was highly correlated with relapse, 8 of 9 MRD
positive patients relapsed. While most studies have found a strong correlation between
MRD positivity and relapse,83,214,215 regardless of the MRD quantity, some studies report a
high frequency of MRD positive patients who do not relapse.82,120,121,217 Some
explanations to this difference may be differences in patient population, transplant
regimens, and sensitivity of the MRD method applied. In 6 patients, no MRD was detected
prior to relapse. Some possible explanations to the false negative results were lower
sensitivity of the patient-specific primers (10-3 in 2 patients), CNS relapse (one patient),
only blood samples available for one patient and clonal exchange (one patient). Some of
the approaches to increase the predictive role of MRD results for relapse in ALL patients
after SCT include quantitative and sensitive MRD analysis using at least two Ig/TcR
rearrangement targets. By frequent sampling, patients at high risk of relapse can be
identified and immunotherapeutic interventions can be started at an early stage when the
tumor burden is still low. The median time interval between a positive MRD signal and
relapse has varied between 1 month and 5.5 months in different studies.83,214,216 This time
interval may be sufficient in some cases to eradicate residual disease by the use of
antileukemic interventions.82,83

6.3 NONMYELOABLATIVE SCT VS. MYELOABLATIVE SCT (PAPER IV)

In Paper IV, the kinetics of MRD and chimerism were studied in 15 patients with CML
after nonmyeloablative SCT (NST) and in 10 patients after conventional SCT (CST).
Chimerism analysis was performed in different cell populations and quantitative,
competitive PCR was performed for BCR-ABL transcripts. All 15 NST patients showed
T-cell mixed chimerism (MC) as compared to 5 of 10 CST patients. Granulocyte and B-
cell MC was also more frequently detected in the NST patients. All NST patients also
showed MRD positivity after SCT. The BCR-ABL/ABL ratio during the first 3 months
was with a median of 0.2% in the NST patients signifcantly higher than 0.01% in CST
patients. Eleven NST patients became MRD negative after a median time of 3.5 (range 1-
7) months. MRD and chimerism kinetics are shown in Figure 10.
A high incidence of MC after NST has been detected in many studies.24,154,272,273 High
incidences of MC and MRD in CML patients have also been reported by others.277,279 In
the study by Kreuzer et al, 10 of 14 patients achieved a molecular remission after a median
time of 9 (range 3-22) weeks.279 This is in line with our findings. High molecular
remission rates in CML has also been reported by Or et al, although details concerning
chimerism and MRD data were not presented.280
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Figure 10. Kinetics of MRD and chimerism over time after allogeneic SCT.
Results are shown for all 15 patients with non-myeloablative conditioning (N1-
N15) and 2 patients with conventional conditioning (C9 and C10). Chimerism
results in different cell populations are shown by circles (black circle: mixed
chimerism with more than 50% recipient cells, grey circle: mixed chimerism with
less than 50% recipient cells, open circle: donor chimerism). Arrows indicate the
time of donor lymphocyte infusions (T-cells/kg), a second transplantation (ReTx)
or Hematological relapse (HRel). Gran.: granulocytes.
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Figure 10. Contin…
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6.4 WT1 AS A MRD MARKER? (PAPER V)

In Paper V, the value of WT1 as a MRD marker was evaluated by comparing the kinetics
of WT1 levels with that of BCR-ABL. In 32 Ph-positive patients (28 CML, 3 ALL, 1
AML), RQ-PCR was applied to monitor the kinetics of WT1 and BCR-ABL after SCT. A
background expression of WT1 was detected in PB of 13 healthy controls and in BCR-
ABL negative samples (n=48). Kinetic studies of WT1 showed that an increase of WT1
above the background level was usually detected at the time of relapse. However an
increase of WT1 before relapse was only detected in 2 of 6 patients with relapse.
Furthermore, the highest WT1 values found at the time of relapse were about two logs
higher than the background level, which indicates a sensitivity of only 10-2. Thus, the
sensitivity and ability of WT1 to predict a relapse was poor in this study.
Studies on WT1 as a MRD marker have produced conflicting results. While many studies
have reported an association between WT1 expression and relapse,179,180,182,183,293 others
have failed to find such a correlation.184-186 These differences can partly be explained by
differences in sensitivities and the use of qualititative vs. quantitative analysis. WT1
expression in the PB of normal healthy controls have previously been reported in only a
few studies, and usually in a fraction of the controls.178,293,294 However, we could detect
WT1 expression in all 13 controls and all MRD negative samples. According to our data, a
qualitative analysis of WT1 is of limited value. A quantitative analysis may be useful in
some patients. However, in most cases, the level and the time of increase are not sufficient
for predicting a relapse.
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7 CONCLUSIONS

♦ Leukemia lineage-specific chimerism analysis is a sensitive predictor of relapse in
patients with AML.

♦ MRD detection prior to SCT is associated with high risk of relapse in patients with
ALL.

♦ MRD detection after SCT is associated with high risk of relapse in patients with ALL.

♦ MRD positive ALL patients may benefit from the GVL effect of GVHD.

♦ Higher incidences of MRD and MC are detected early after transplant in CML patients
receiving a nonmyeloablative conditioning as compared to those receiving a
conventional coditioning.

♦ High rates of molecular remissions can be achieved after nonmyeloablative SCT in
patients with CML.

♦ WT1 transcript analysis is of limited value for predicting relapse in BCR-ABL
positive patients.
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10 SAMMANFATTNING PÅ SVENSKA
Benmärgen bildar mängder av vita blodkroppar som bygger upp vårt immunförsvar, röda
blodkroppar som transporterar syre i kroppen samt blodplättar som hjälper blodet att
koagulera. På ytan av en människas celler finns det vävnadsmarkörer (proteiner) som kan
variera från en individ till en annan, dessa kallas för MHC. Man kan säga att varje individ
har sin specifika “namnteckning” på ytan av cellerna. Dessa molekyler kan exempelvis
presentera delar av ett virus eller en bakterie som sedan andra celler i immunförsvaret kan
reagera på. Det är även dessa molekyler som gör att ett organ, exempelvis njure eller
benmärg, från en annan individ uppfattas som främmande. Cancer kan uppstå i de vita
blodkropparna och kallas då för leukemi eller på svenska blodcancer (från grekiskan,
leukos “vit” och haima “blod”). Leukemin yttrar sig med en ohämmad celltillväxt av
cancercellerna vilket leder till blodbrist och nedsatt immunförsvar med svåra infektioner
som följd. Leukemierna definieras som antingen akuta eller kroniska, där de kroniska har
ett långsammare förlopp. I huvudsak är det tre olika patientgrupper som har varit föremål
för den här avhandlingen; Akut Lymfatisk Leukemi (ALL), Akut Myeloisk Leukemi
(AML) och Kronisk Myeloisk Leukemi (KML). Standardbehandling av leukemi utgörs av
cellgiftsbehandling. De patienter som inte svarar på denna behandling alternativt har s.k.
högriskkriterier vid tidpunkten för diagnos är kandidater för benmärgstransplantation
(BMT). Benmärgstransplantation kallas idag även hematopoetisk stamcellstransplantation
(SCT). Benmärgstransplantation är sedan flera decennier en accepterad behandlingsmetod
för patienter med leukemi, blod- och immunbristsjukdomar samt vissa mer ovanliga
enzymbristsjukdomar. Vid benmärgstransplantation kan antingen benmärg användas från
patienten själv (autolog transplantation) eller från någon annan individ (allogen
transplantation). Andra individer som donerar benmärg utgörs antingen av syskon eller
obesläktade frivilliga givare som passar vävnadstypmässigt (dvs. MHC överensstämmer)
med patienten. I första hand försöker man hitta ett syskon som passar. Endast var tredje
patient har dock tillgång till ett syskon som passar vävnadstypmässigt. I de fall där det inte
finns något syskon som passar försöker vi istället hitta en lämplig obesläktad givare. Idag
finns det mer än 8 miljoner frivilliga givare i olika register i världen som kan fungera som
donatorer av benmärg, om MHC passar mellan givaren och patienten. Benmärgscellerna
tas antingen ut från höftbenet med hjälp av speciella nålar eller renas från blodet, efter det
att givaren har stimulerats med en tillväxtfaktor i ett par dagar.
Innan själva transplantationen behandlas alla patienter med cellgiftsbehandling och/eller
strålning, där syftet är att slå ut patientens benmärg för att sedan ersätta den med en ny,
frisk benmärg. I många år har man ansett detta vara grunden till framgången med BMT.
Sedan många år är det dock bevisat att den nya benmärgen, dvs det nya immunförsvaret,
själv har en kraftfull effekt mot leukemin. Detta beror på att det finns skillnader mellan
patienten och givaren trots att MHC är lika. Detta gör att det nya immunförsvaret uppfattar
patienten som “främmande” vilket framkallar en immunologisk attack. De celler som
attackeras först är kvarvarande blodceller från patienten. I och med att även leukemiceller
har patientens “namnteckning” på sin yta, uppfattas dessa som “främmande” och kommer
därför att dödas. Den här transplantat-kontra-värd reaktionen kan även drabba kroppens
övriga celler. Om reaktionen blir alltför kraftfull kan den bli livshotande.
Benmärgstransplantation med benmärg från en annan individ utgör därför en svår
balansgång, där vi eftersträvar en viss reaktion från givarens celler mot patienten men
samtidigt får denna reaktion absolut inte bli för kraftfull. Efter BMT får alla patienter



The methodology and significance of MRD detection after SCT

63

immunförvarshämmande läkemedel som syftar till att minska risken för en svår
transplantat-kontra-värd reaktion. Alla patienter riskerar efter BMT att drabbas av
infektioner pga. avsaknaden av vita blodkroppar, innan den nya benmärgen börjar fungera
(drygt två veckor efter BMT). Det tar dock tid för det nya immunförsvaret att mogna ut,
varför många patienter har en ökad infektionsrisk i flera år efter behandlingen.
De största komplikationerna efter BMT utgörs av: återfall av grundsjukdomen, svår
transplantat-kontra-värd reaktion samt infektioner.
Hos patienter med leukemi utgör återfall av leukemin det största hotet, trots den intensiva
förbehandlingen och den nya benmärgens anti-leukemi effekt. Det är ett välkänt faktum att
resultaten vid behandling av leukemier och annan typ av cancer är mycket mer
framgångsrik om behandlingen sätts in tidigt, innan cancercellerna har blivit alltför många.
Från studier på djur samt människa har man uppskattat antalet leukemiceller vid diagnos
alternativt återfall till 1000 miljarder totalt i kroppen. Dagens rutinmässiga metoder som
används för att avgöra om en patient har kvar leukemiceller eller ej, har en känslighet på
10-2 (1%). Detta innebär att en patient som sägs vara fri från leukemi, trots detta kan ha 10
miljarder leukemiceller i sin kropp! Det är med andra ord inte konstigt att patienterna
riskerar att få sin sjukdom tillbaka trots att testerna har visat på “grönt ljus”. Benämningen
MRD (Minimal Residual Disease) som använts mycket i denna avhandling, syftar till att
upptäcka leukemiceller under den analysnivå som dagens rutinmässiga metoder är
begränsade till, dvs 1-5%. Det finns olika metoder för MRD analyser.

Den här avhandlingen har handlat om att etablera och utvärdera känsliga DNA-tekniker,
för att tidigare än idag kunna identifiera vilka patienter som löper risk att få sin sjukdom
tillbaka. I så fall kan behandling insättas tidigare med exempelvis vita blodkroppar från
den som donerade benmärg inför själva transplantationen. Detta har visat sig vara en
mycket effektiv och framgångsrik behandling hos patienter med kronisk leukemi. Det är
också visat att denna behandling är mycket mer effektiv om den sätts in på ett tidigare
stadium när leukemicellerna är färre.
För detta syfte har vi utvärderat olika metoder. Dessa metoder bygger på användningen av
en s.k. PCR-teknik (från engelskans Polymerase Chain Reaction). PCR går ut på att
kopiera upp en känd DNA sekvens som sedan kan analyseras på olika sätt. Med denna
metod kan man hitta en leukemisk cell bland 1 miljon vanliga celler.
1. Chimärismmetoden. Ordet chimärism, som har sitt ursprung i den grekiska mytologin,
har inom medicinen använts för att beskriva tillstånd där cellpopulationer från olika
individer förekommer samtidigt hos en individ, exempelvis efter en transplantation. Vi har
studerat anslaget av donatorsceller samt förekomst av eventuellt kvarvarande patientceller
(blandat chimärism) efter BMT. PCR-tekniken har vi använt för att amplifiera s.k.
minisatelliter. De sistnämnda finns hos alla människor i DNA:t men skiljer sig i storlek
mellan olika individer. Dessa kan därför användas för att separera olika individer åt.
Denna teknik har visat sig mycket värdefull för att förutsäga avstötning av den nya
benmärgen. Om tekniken även är användbar för att tidigt upptäcka leukemi återfall har
varit omdiskuterat. Fördelen med denna metod är att den i stort sätt kan användas för alla
patienter. Chimärismtekniken används nu rutinmässigt för att följa upp patienter efter
BMT.
2. Rearrangemangtekniken. Den patientspecifika leukemi tekniken bygger på det faktum
att leukemi uppstår i en cell som sedan ger upphov till en oerhörd mängd kopior. De
lymfatiska vita blodkropparna, som förenklat framförallt skyddar oss mot virusinfektioner,
har på sin yta receptorer som exempelvis kan reagera på delar av ett virus. Varje enskild
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lymfatisk cell har sin specifika receptor. Genom att med DNA teknik studera “DNA
sekvensen” för denna receptor, kan denna sekvens användas som en “namnteckning” för
patientens leukemi. Denna sekvens kommer att vara densamma för alla leukemiceller hos
patienten. Eftersom denna metod är svår och tidsödande har den ännu inte satts i kliniskt
bruk. Den är begränsad till ALL patienter.
3. Leukemispecifika tekniken. Cancer uppkommer oftast pga att det sker mutationer
(ändringar) i vårt DNA. Eftersom dessa mutationer bara finns i leukemiceller kan de
användas som markörer (namnteckningar) för att hitta kvarvarande leukemiceller efter
transplantation. Den mutation som vi analyserat involverar två kromosomer, nr 9 och 22.
Genom att ett DNA utbyte sker mellan dessa kromosomer så bildas det en ny gen, BCR-
ABL genen. Med PCR tekniken har vi letat efter denna mutation som bevis på att det finns
kvarvarande leukemiceller i blodet. Även denna metod har satts i kliniskt bruk. Metoden
används främst hos KML patienter.

I delarbete I studerade vi betydelsen av chimärismtekniken hos patienter med AML efter
BMT. Tekniken förutsåg återfall av leukemi flera månader innan dessa patienter fick ett
återfall. Från dessa studier har vi dragit slutsatsen att chimärism metoden kan användas för
att tidigt upptäcka patienter som löper risk att få sin leukemi tillbaka. Vi har nu börjat
behandla patienterna på grundval av chimärism resultaten.
I delarbete II och III studerade vi patienter med ALL. Med rearrangemang tekniken letade
vi efter leukemiceller precis innan BMT och vid flera tidpunkter efter BMT. Patienter som
uppvisade spår av leukemiceller både innan och efter BMT hade ökad risk för att få ett
återfall. Däremot såg vi att patienter som hade tecken på transplantat-kontra-värd
reaktionen kunde klara sig undan ett återfall. Även här kunde vi förutsäga ett återfall flera
månader innan det inträffade.
I delarbete IV studerade vi KML patienter som fått betydligt mindre doser cellgift innan
BMT. Tanken är att det nya immunförvaret ska göra jobbet och bekämpa
grundsjukdomen. Dessutom möjliggör denna behandling att fler och äldre patienter kan
komma ifråga för BMT, i och med att förbehandlingen är betydligt lägre och därmed även
risken för toxiska skador. Vi har använt oss av både chimärismtekniken och
leukemispecifika tekniken för att följa patienter som fått en dennna nya behandling. Dessa
resultat jämfördes med de som erhölls från patienter som hade fått en vanlig kraftfull
förbehandling. Som väntat hade patienter med lägre förbehandling betydligt mer
kvarvarande leukemiceller efter BMT. Däremot försvann leukemicellerna hos de flesta
patienter, vilket tyder på att den nya behandlingen är användbar hos KML patienter.
I det sista delarbetet ville vi utvärdera en ny markör som heter WT1. De metoder som
används idag för att hitta hitta leukemiceller är antingen för okänsliga eller så är
användningen begränsad till specika patientgrupper. På senare år har flera studier visat att
WT1 är en universal markör som kan användas för att leta efter leukemiceller hos alla
patientgrupper. När vi studerade denna gen och jämförde med BCR-ABL genen (som är
en pålitlig leukemispecifik markör) kunde vi konstatera att WT1 är inte tillräckligt känslig
för att förutsäga ett återfall. Dessutom såg vi att genen även fanns i friska celler.

Sammantaget visar dessa studier att de metoder vi har satt upp är viktiga för att följa upp
patienter efter BMT. Metoderna möjliggör att leukemiåterfall tidigare kan förutsägas och
därmed att tidigare behandling kan sättas in än idag. Förhoppningsvis kommer detta leda
till mindre återfall av leukemi efter BMT i framtiden.



The methodology and significance of MRD detection after SCT

65

11 PAPERS




